Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Anim Biosci ; 12: 345-368, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963400

RESUMO

Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.


Assuntos
Carne in vitro , Carne , Animais , Bem-Estar do Animal , Técnicas de Cultura de Células/veterinária , Diferenciação Celular
2.
Front Nutr ; 10: 1212196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781115

RESUMO

Cultured meat technologies leverage the proliferation and differentiation of animal-derived stem cells ex vivo to produce edible tissues for human consumption in a sustainable fashion. However, skeletal muscle is a dynamic and highly complex tissue, involving the interplay of numerous mono- and multinucleated cells, including muscle fibers, satellite cells (SCs) and fibro-adipogenic progenitors (FAPs), and recreation of the tissue in vitro thus requires the characterization and manipulation of a broad range of cell types. Here, we use a single-cell RNA sequencing approach to characterize cellular heterogeneity within bovine muscle and muscle-derived cell cultures over time. Using this data, we identify numerous distinct cell types, and develop robust protocols for the easy purification and proliferation of several of these populations. We note overgrowth of undesirable cell types within heterogeneous proliferative cultures as a barrier to efficient cultured meat production, and use transcriptomics to identify conditions that favor the growth of SCs in the context of serum-free medium. Combining RNA velocities computed in silico with time-resolved flow cytometric analysis, we characterize dynamic subpopulations and transitions between active, quiescent, and committed states of SCs, and demonstrate methods for modulation of these states during long-term proliferative cultures. This work provides an important reference for advancing our knowledge of bovine skeletal muscle biology, and its application in the development of cultured meat technologies.

3.
NPJ Sci Food ; 6(1): 6, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075125

RESUMO

Cultured meat is an emergent technology with the potential for significant environmental and animal welfare benefits. Accurate mimicry of traditional meat requires fat tissue; a key contributor to both the flavour and texture of meat. Here, we show that fibro-adipogenic progenitor cells (FAPs) are present in bovine muscle, and are transcriptionally and immunophenotypically distinct from satellite cells. These two cell types can be purified from a single muscle sample using a simple fluorescence-activated cell sorting (FACS) strategy. FAPs demonstrate high levels of adipogenic potential, as measured by gene expression changes and lipid accumulation, and can be proliferated for a large number of population doublings, demonstrating their suitability for a scalable cultured meat production process. Crucially, FAPs reach a mature level of adipogenic differentiation in three-dimensional, edible hydrogels. The resultant tissue accurately mimics traditional beef fat in terms of lipid profile and taste, and FAPs thus represent a promising candidate cell type for the production of cultured fat.

4.
Nat Food ; 3(1): 74-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118488

RESUMO

Cultured meat production requires the robust differentiation of satellite cells into mature muscle fibres without the use of animal-derived components. Current protocols induce myogenic differentiation in vitro through serum starvation, that is, an abrupt reduction in serum concentration. Here we used RNA sequencing to investigate the transcriptomic remodelling of bovine satellite cells during myogenic differentiation induced by serum starvation. We characterized canonical myogenic gene expression, and identified surface receptors upregulated during the early phase of differentiation, including IGF1R, TFRC and LPAR1. Supplementation of ligands to these receptors enabled the formulation of a chemically defined media that induced differentiation in the absence of serum starvation and/or transgene expression. Serum-free myogenic differentiation was of similar extent to that induced by serum starvation, as evaluated by transcriptome analysis, protein expression and the presence of a functional contractile apparatus. Moreover, the serum-free differentiation media supported the fabrication of three-dimensional bioartificial muscle constructs, demonstrating its suitability for cultured beef production.

5.
Cell Rep ; 26(4): 815-824.e4, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30673604

RESUMO

Conventional human embryonic stem cells are considered to be primed pluripotent but can be induced to enter a naive state. However, the transcriptional features associated with naive and primed pluripotency are still not fully understood. Here we used single-cell RNA sequencing to characterize the differences between these conditions. We observed that both naive and primed populations were mostly homogeneous with no clear lineage-related structure and identified an intermediate subpopulation of naive cells with primed-like expression. We found that the naive-primed pluripotency axis is preserved across species, although the timing of the transition to a primed state is species specific. We also identified markers for distinguishing human naive and primed pluripotency as well as strong co-regulatory relationships between lineage markers and epigenetic regulators that were exclusive to naive cells. Our data provide valuable insights into the transcriptional landscape of human pluripotency at a cellular and genome-wide resolution.


Assuntos
Epigênese Genética , Células-Tronco Embrionárias Humanas/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica , Linhagem Celular , Células-Tronco Embrionárias Humanas/citologia , Humanos
6.
Sci Rep ; 8(1): 10808, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018348

RESUMO

Isolating and maintaining the appropriate stem cell for large scale cell culture is essential in tissue engineering or food production. For bovine satellite cells an optimized isolation and purification protocol is lacking and there is also no detailed understanding on the factors that maintain stemness of these cells. Here, we set up a fluorescence-activated cell sorting strategy to enrich bovine satellite cells. We found that p38-MAPK signalling is activated and PAX7 expression is gradually lost during satellite cell proliferation. The p38 inhibitor (SB203580) treatment maintained PAX7 expression but inhibited the fusion of satellite cells in a concentration-dependent way in short-term incubation. The mechanism of p38 inhibition was confirmed by inhibiting canonical p38 signalling, i.e. HSP27. Long-term culture with an appropriate concentration of p38i enhanced the proliferation and PAX7 expression, while the differentiation capacity recovered and was enhanced compared to vehicle control. These studies indicate that bovine satellite cells maintenance depends on cell purity and p38 MAPK signalling. Inhibition of p38 MAPK signaling is a promising strategy to facilitate large scale cell expansion of primary cells for tissue engineering and cultured meat purposes.


Assuntos
Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Imidazóis/farmacologia , Masculino , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Piridinas/farmacologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...