Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757363

RESUMO

The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.


Assuntos
Sistema Glinfático , Camundongos , Humanos , Animais , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/metabolismo , Líquido Extracelular/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Água/metabolismo
2.
Nat Commun ; 13(1): 3897, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794106

RESUMO

Perivascular spaces (PVS) drain brain waste metabolites, but their specific flow paths are debated. Meningeal pia mater reportedly forms the outermost boundary that confines flow around blood vessels. Yet, we show that pia is perforated and permissive to PVS fluid flow. Furthermore, we demonstrate that pia is comprised of vascular and cerebral layers that coalesce in variable patterns along leptomeningeal arteries, often merging around penetrating arterioles. Heterogeneous pial architectures form variable sieve-like structures that differentially influence cerebrospinal fluid (CSF) transport along PVS. The degree of pial coverage correlates with macrophage density and phagocytosis of CSF tracer. In vivo imaging confirms transpial influx of CSF tracer, suggesting a role of pia in CSF filtration, but not flow restriction. Additionally, pial layers atrophy with age. Old mice also exhibit areas of pial denudation that are not observed in young animals, but pia is unexpectedly hypertrophied in a mouse model of Alzheimer's disease. Moreover, pial thickness correlates with improved CSF flow and reduced ß-amyloid deposits in PVS of old mice. We show that PVS morphology in mice is variable and that the structure and function of pia suggests a previously unrecognized role in regulating CSF transport and amyloid clearance in aging and disease.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Glinfático/fisiologia , Camundongos
3.
Brain ; 145(2): 787-797, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581781

RESUMO

Cerebral oedema develops after anoxic brain injury. In two models of asphyxial and asystolic cardiac arrest without resuscitation, we found that oedema develops shortly after anoxia secondary to terminal depolarizations and the abnormal entry of CSF. Oedema severity correlated with the availability of CSF with the age-dependent increase in CSF volume worsening the severity of oedema. Oedema was identified primarily in brain regions bordering CSF compartments in mice and humans. The degree of ex vivo tissue swelling was predicted by an osmotic model suggesting that anoxic brain tissue possesses a high intrinsic osmotic potential. This osmotic process was temperature-dependent, proposing an additional mechanism for the beneficial effect of therapeutic hypothermia. These observations show that CSF is a primary source of oedema fluid in anoxic brain. This novel insight offers a mechanistic basis for the future development of alternative strategies to prevent cerebral oedema formation after cardiac arrest.


Assuntos
Edema Encefálico , Parada Cardíaca , Hipotermia Induzida , Hipóxia Encefálica , Animais , Encéfalo , Edema Encefálico/etiologia , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Humanos , Hipóxia Encefálica/complicações , Camundongos
4.
Physiol Rev ; 102(2): 1025-1151, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949874

RESUMO

The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-ß, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.


Assuntos
Sistema Glinfático , Peptídeos beta-Amiloides/metabolismo , Transporte Biológico , Barreira Hematoencefálica , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Sistema Glinfático/metabolismo , Humanos
5.
Elife ; 102021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687330

RESUMO

Cerebrospinal fluid (CSF) flowing through periarterial spaces is integral to the brain's mechanism for clearing metabolic waste products. Experiments that track tracer particles injected into the cisterna magna (CM) of mouse brains have shown evidence of pulsatile CSF flow in perivascular spaces surrounding pial arteries, with a bulk flow in the same direction as blood flow. However, the driving mechanism remains elusive. Several studies have suggested that the bulk flow might be an artifact, driven by the injection itself. Here, we address this hypothesis with new in vivo experiments where tracer particles are injected into the CM using a dual-syringe system, with simultaneous injection and withdrawal of equal amounts of fluid. This method produces no net increase in CSF volume and no significant increase in intracranial pressure. Yet, particle-tracking reveals flows that are consistent in all respects with the flows observed in earlier experiments with single-syringe injection.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Cisterna Magna/metabolismo , Injeções Espinhais/efeitos adversos , Animais , Artérias/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Cell Rep ; 33(12): 108524, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357428

RESUMO

The emerging interest in brain fluid transport has prompted a need for techniques that provide an understanding of what factors regulate cerebrospinal fluid (CSF) production. Here, we describe a methodology for direct quantification of CSF production in awake mice. We measure CSF production by placing a catheter in a lateral ventricle, while physically blocking outflow from the 4th ventricle. Using this methodology, we show that CSF production increases during isoflurane anesthesia, and to a lesser extent with ketamine/xylazine anesthesia, relative to the awake state. Aged mice have reduced CSF production, which is even lower in aged mice overexpressing amyloid-ß. Unexpectedly, CSF production in young female mice is 30% higher than in age-matched males. Altogether, the present observations imply that a reduction in CSF production might contribute to the age-related risk of proteinopathies but that the rate of CSF production and glymphatic fluid transport are not directly linked.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Sistema Glinfático/metabolismo , Animais , Feminino , Masculino , Camundongos
7.
J R Soc Interface ; 17(172): 20200593, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171075

RESUMO

Fluid-dynamic models of the flow of cerebrospinal fluid in the brain have treated the perivascular spaces either as open (without internal solid obstacles) or as porous. Here, we present experimental evidence that pial (surface) periarterial spaces in mice are essentially open. (1) Paths of particles in the perivascular spaces are smooth, as expected for viscous flow in an open vessel, not diffusive, as expected for flow in a porous medium. (2) Time-averaged velocity profiles in periarterial spaces agree closely with theoretical profiles for viscous flow in realistic models, but not with the nearly uniform profiles expected for porous medium. Because these spaces are open, they have much lower hydraulic resistance than if they were porous. To demonstrate, we compute hydraulic resistance for realistic periarterial spaces, both open and porous, and show that the resistance of the porous spaces are greater, typically by a factor of a hundred or more. The open nature of these periarterial spaces allows significantly greater flow rates and more efficient removal of metabolic waste products.


Assuntos
Encéfalo , Animais , Encéfalo/diagnóstico por imagem , Difusão , Camundongos , Porosidade , Viscosidade
8.
Neurocrit Care ; 33(3): 636-645, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959201

RESUMO

Effective treatment options for patients with life-threatening neurological disorders are limited. To address this unmet need, high-impact translational research is essential for the advancement and development of novel therapeutic approaches in neurocritical care. "The Neurotherapeutics Symposium 2019-Neurological Emergencies" conference, held in Rochester, New York, in June 2019, was designed to accelerate translation of neurocritical care research via transdisciplinary team science and diversity enhancement. Diversity excellence in the neuroscience workforce brings innovative and creative perspectives, and team science broadens the scientific approach by incorporating views from multiple stakeholders. Both are essential components needed to address complex scientific questions. Under represented minorities and women were involved in the organization of the conference and accounted for 30-40% of speakers, moderators, and attendees. Participants represented a diverse group of stakeholders committed to translational research. Topics discussed at the conference included acute ischemic and hemorrhagic strokes, neurogenic respiratory dysregulation, seizures and status epilepticus, brain telemetry, neuroprognostication, disorders of consciousness, and multimodal monitoring. In these proceedings, we summarize the topics covered at the conference and suggest the groundwork for future high-yield research in neurologic emergencies.


Assuntos
Emergências , Doenças do Sistema Nervoso , Feminino , Humanos , Doenças do Sistema Nervoso/terapia
9.
Trends Neurosci ; 43(7): 458-466, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32423764

RESUMO

The glymphatic concept along with the discovery of meningeal lymphatic vessels have, in recent years, highlighted that fluid is directionally transported within the central nervous system (CNS). Imaging studies, as well as manipulations of fluid transport, point to a key role of the glymphatic-lymphatic system in clearance of amyloid-ß and other proteins. As such, the glymphatic-lymphatic system represents a new target in combating neurodegenerative diseases. Not unexpectedly, introduction of a new plumbing system in the brain has stirred controversies. This opinion article will highlight what we know about the brain's fluid transport systems, where experimental data are lacking, and what is still debated.


Assuntos
Sistema Glinfático , Vasos Linfáticos , Doenças Neurodegenerativas , Encéfalo , Sistema Nervoso Central , Humanos
10.
Nat Rev Neurol ; 16(3): 137-153, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094487

RESUMO

Perivascular spaces include a variety of passageways around arterioles, capillaries and venules in the brain, along which a range of substances can move. Although perivascular spaces were first identified over 150 years ago, they have come to prominence recently owing to advances in knowledge of their roles in clearance of interstitial fluid and waste from the brain, particularly during sleep, and in the pathogenesis of small vessel disease, Alzheimer disease and other neurodegenerative and inflammatory disorders. Experimental advances have facilitated in vivo studies of perivascular space function in intact rodent models during wakefulness and sleep, and MRI in humans has enabled perivascular space morphology to be related to cognitive function, vascular risk factors, vascular and neurodegenerative brain lesions, sleep patterns and cerebral haemodynamics. Many questions about perivascular spaces remain, but what is now clear is that normal perivascular space function is important for maintaining brain health. Here, we review perivascular space anatomy, physiology and pathology, particularly as seen with MRI in humans, and consider translation from models to humans to highlight knowns, unknowns, controversies and clinical relevance.


Assuntos
Encefalopatias , Sistema Glinfático/anatomia & histologia , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/fisiologia , Animais , Encefalopatias/diagnóstico por imagem , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Humanos
11.
Science ; 367(6483)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32001524

RESUMO

Stroke affects millions each year. Poststroke brain edema predicts the severity of eventual stroke damage, yet our concept of how edema develops is incomplete and treatment options remain limited. In early stages, fluid accumulation occurs owing to a net gain of ions, widely thought to enter from the vascular compartment. Here, we used magnetic resonance imaging, radiolabeled tracers, and multiphoton imaging in rodents to show instead that cerebrospinal fluid surrounding the brain enters the tissue within minutes of an ischemic insult along perivascular flow channels. This process was initiated by ischemic spreading depolarizations along with subsequent vasoconstriction, which in turn enlarged the perivascular spaces and doubled glymphatic inflow speeds. Thus, our understanding of poststroke edema needs to be revised, and these findings could provide a conceptual basis for development of alternative treatment strategies.


Assuntos
Edema Encefálico/líquido cefalorraquidiano , Edema Encefálico/etiologia , Sistema Glinfático/fisiopatologia , Acidente Vascular Cerebral/líquido cefalorraquidiano , Acidente Vascular Cerebral/complicações , Animais , Aquaporina 5/metabolismo , Edema Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/diagnóstico por imagem , Vasoconstrição
12.
Trends Mol Med ; 26(3): 285-295, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31959516

RESUMO

Approximately 10% of dementia patients have idiopathic normal pressure hydrocephalus (iNPH), an expansion of the cerebrospinal fluid (CSF)-filled brain ventricles. iNPH and Alzheimer's disease (AD) both exhibit sleep disturbances, build-up of brain metabolic wastes and amyloid-ß (Aß) plaques, perivascular reactive astrogliosis, and mislocalization of astrocyte aquaporin-4 (AQP4). The glia-lymphatic (glymphatic) system facilitates brain fluid clearance and waste removal during sleep via glia-supported perivascular channels. Human studies have implicated impaired glymphatic function in both AD and iNPH. Continued investigation into the role of glymphatic system biology in AD and iNPH models could lead to new strategies to improve brain health by restoring homeostatic brain metabolism and CSF dynamics.


Assuntos
Doença de Alzheimer/patologia , Sistema Glinfático/patologia , Hidrocefalia de Pressão Normal/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Glinfático/metabolismo , Humanos , Hidrocefalia de Pressão Normal/metabolismo
13.
Biomed Opt Express ; 10(12): 6242-6257, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853397

RESUMO

We report on the development of fluorescence Gabor domain optical coherence microscopy (Fluo GD-OCM), a combination of GD-OCM with laser scanning confocal fluorescence microscopy (LSCFM) for synchronous micro-structural and fluorescence imaging. The dynamic focusing capability of GD-OCM provided the adaptive illumination environment for both modalities without any mechanical movement. Using Fluo GD-OCM, we imaged ex vivo DsRed-expressing cells in the brain of a transgenic mouse, as well as Cy3-labeled ganglion cells and Cy3-labeled astrocytes from a mouse retina. The self-registration of images taken by the two different imaging modalities showed the potential for a correlative study of subjects and double identification of the target.

14.
J Vis Exp ; (149)2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31403617

RESUMO

Cerebrospinal fluid (CSF) flow in rodents has largely been studied using ex vivo quantification of tracers. Techniques such as two-photon microscopy and magnetic resonance imaging (MRI) have enabled in vivo quantification of CSF flow but they are limited by reduced imaging volumes and low spatial resolution, respectively. Recent work has found that CSF enters the brain parenchyma through a network of perivascular spaces surrounding the pial and penetrating arteries of the rodent cortex. This perivascular entry of CSF is a primary driver of the glymphatic system, a pathway implicated in the clearance of toxic metabolic solutes (e.g., amyloid-ß). Here, we illustrate a new macroscopic imaging technique that allows real-time, mesoscopic imaging of fluorescent CSF tracers through the intact skull of live mice. This minimally-invasive method facilitates a multitude of experimental designs and enables single or repeated testing of CSF dynamics. Macroscopes have high spatial and temporal resolution and their large gantry and working distance allow for imaging while performing tasks on behavioral devices. This imaging approach has been validated using two-photon imaging and fluorescence measurements obtained from this technique strongly correlate with ex vivo fluorescence and quantification of radio-labeled tracers. In this protocol, we describe how transcranial macroscopic imaging can be used to evaluate glymphatic transport in live mice, offering an accessible alternative to more costly imaging modalities.


Assuntos
Encéfalo/fisiologia , Líquido Cefalorraquidiano/fisiologia , Sistema Glinfático/fisiologia , Imageamento Tridimensional/instrumentação , Animais , Encéfalo/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Imageamento Tridimensional/métodos , Camundongos , Microscopia de Fluorescência , Crânio
15.
Biomed Opt Express ; 10(7): 3699-3718, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31360610

RESUMO

In dynamic optical coherence elastography (OCE), surface acoustic waves are the predominant perturbations. They constrain the quantification of elastic modulus to the direction of wave propagation only along the surface of tissues, and disregard elasticity gradients along depth. Longitudinal shear waves (LSW), on the other hand, can be generated at the surface of the tissue and propagate through depth with desirable properties for OCE: (1) LSW travel at the shear wave speed and can discriminate elasticity gradients along depth, and (2) the displacement of LSW is longitudinally polarized along the direction of propagation; therefore, it can be measured by a phase-sensitive optical coherence tomography system. In this study, we explore the capabilities of LSW generated by a circular glass plate in contact with a sample using numerical simulations and tissue-mimicking phantom experiments. Results demonstrate the potential of LSW in detecting an elasticity gradient along axial and lateral directions simultaneously. Finally, LSW are used for the elastography of ex vivo mouse brain and demonstrate important implications in in vivo and in situ measurements of local elasticity changes in brain and how they might correlate with the onset and progression of degenerative brain diseases.

16.
J Neurosci ; 39(32): 6365-6377, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209176

RESUMO

The glymphatic system is a brainwide CSF transport system that uses the perivascular space for fast inflow of CSF. Arterial pulsations are a major driver of glymphatic CSF inflow, and hypertension that causes vascular pathologies, such as arterial stiffening and perivascular alterations, may impede the inflow. We used dynamic contrast-enhanced MRI to assess the effect of hypertension on glymphatic transport kinetics in male young and adult spontaneously hypertensive (SHR) rats compared with age-matched normotensive Wistar-Kyoto rats (WKY). We anesthetized the rats with dexmedetomidine/isoflurane and infused paramagnetic contrast (Gd-DOTA) into the cisterna magna during dynamic contrast-enhanced MRI to quantify glymphatic transport kinetics. Structural MRI analysis showed that cerebroventricular volumes are larger and brain volumes significantly smaller in SHR compared with WKY rats, regardless of age. We observed ventricular reflux of Gd-DOTA in SHR rats only, indicating abnormal CSF flow dynamics secondary to innate hydrocephalus. One-tissue compartment analysis revealed impeded glymphatic transport of Gd-DOTA in SHR compared with WKY rats in both age groups, implying that glymphatic transport, including solute clearance from brain parenchyma, is impaired during evolving hypertension in young SHR, an effect that worsens in states of chronic hypertension. The study demonstrates the suppression of glymphatic clearance in SHR rats and thus offers new insight into the coexistence of hypertension and concomitant vascular pathologies in Alzheimer's disease. The study further highlights the importance of considering the distribution of tracers in the CSF compartment in the analysis of the glymphatic system.SIGNIFICANCE STATEMENT The glymphatic system contributes to the removal of amyloid ß from the brain and is disrupted in Alzheimer's disease and aging. Using a rat model of hypertension, we measured gross CSF flow and tracked glymphatic influx and efflux rates with dynamic contrast-enhanced MRI, showing that glymphatic transport is compromised in both early and advanced stages of hypertension. The study provides a new perspective on the importance for brain metabolite and fluid homeostasis of maintaining healthy blood vessels, an increasingly pertinent issue in an aging population that in part may explain the link between vascular pathology and Alzheimer's disease.


Assuntos
Sistema Glinfático/fisiopatologia , Hipertensão/fisiopatologia , Fatores Etários , Doença de Alzheimer/fisiopatologia , Animais , Ventrículos Cerebrais/patologia , Líquido Cefalorraquidiano/fisiologia , Meios de Contraste/farmacocinética , Progressão da Doença , Compostos Heterocíclicos/líquido cefalorraquidiano , Compostos Heterocíclicos/farmacocinética , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão , Compostos Organometálicos/líquido cefalorraquidiano , Compostos Organometálicos/farmacocinética , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Reologia
17.
Fluids Barriers CNS ; 16(1): 19, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31217012

RESUMO

BACKGROUND: Periarterial spaces (PASs) are annular channels that surround arteries in the brain and contain cerebrospinal fluid (CSF): a flow of CSF in these channels is thought to be an important part of the brain's system for clearing metabolic wastes. In vivo observations reveal that they are not concentric, circular annuli, however: the outer boundaries are often oblate, and the arteries that form the inner boundaries are often offset from the central axis. METHODS: We model PAS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each shape, we solve the governing Navier-Stokes equation to determine the velocity profile for steady laminar flow and then compute the corresponding hydraulic resistance. RESULTS: We find that the observed shapes of PASs have lower hydraulic resistance than concentric, circular annuli of the same size, and therefore allow faster, more efficient flow of cerebrospinal fluid. We find that the minimum hydraulic resistance (and therefore maximum flow rate) for a given PAS cross-sectional area occurs when the ellipse is elongated and intersects the circle, dividing the PAS into two lobes, as is common around pial arteries. We also find that if both the inner and outer boundaries are nearly circular, the minimum hydraulic resistance occurs when the eccentricity is large, as is common around penetrating arteries. CONCLUSIONS: The concentric circular annulus assumed in recent studies is not a good model of the shape of actual PASs observed in vivo, and it greatly overestimates the hydraulic resistance of the PAS. Our parameterization can be used to incorporate more realistic resistances into hydraulic network models of flow of cerebrospinal fluid in the brain. Our results demonstrate that actual shapes observed in vivo are nearly optimal, in the sense of offering the least hydraulic resistance. This optimization may well represent an evolutionary adaptation that maximizes clearance of metabolic waste from the brain.


Assuntos
Artérias Cerebrais/fisiologia , Líquido Cefalorraquidiano/fisiologia , Sistema Glinfático/fisiologia , Modelos Biológicos , Pia-Máter/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Humanos , Pia-Máter/irrigação sanguínea
18.
Proc Natl Acad Sci U S A ; 116(22): 11010-11019, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31097598

RESUMO

Spontaneous waves of cortical spreading depolarization (CSD) are induced in the setting of acute focal ischemia. CSD is linked to a sharp increase of extracellular K+ that induces a long-lasting suppression of neural activity. Furthermore, CSD induces secondary irreversible damage in the ischemic brain, suggesting that K+ homeostasis might constitute a therapeutic strategy in ischemic stroke. Here we report that adrenergic receptor (AdR) antagonism accelerates normalization of extracellular K+, resulting in faster recovery of neural activity after photothrombotic stroke. Remarkably, systemic adrenergic blockade before or after stroke facilitated functional motor recovery and reduced infarct volume, paralleling the preservation of the water channel aquaporin-4 in astrocytes. Our observations suggest that AdR blockers promote cerebrospinal fluid exchange and rapid extracellular K+ clearance, representing a potent potential intervention for acute stroke.


Assuntos
Antagonistas Adrenérgicos/farmacologia , Isquemia Encefálica/metabolismo , Neuroproteção/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo
20.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561329

RESUMO

The glymphatic system is a brain-wide clearance pathway; its impairment contributes to the accumulation of amyloid-ß. Influx of cerebrospinal fluid (CSF) depends upon the expression and perivascular localization of the astroglial water channel aquaporin-4 (AQP4). Prompted by a recent failure to find an effect of Aqp4 knock-out (KO) on CSF and interstitial fluid (ISF) tracer transport, five groups re-examined the importance of AQP4 in glymphatic transport. We concur that CSF influx is higher in wild-type mice than in four different Aqp4 KO lines and in one line that lacks perivascular AQP4 (Snta1 KO). Meta-analysis of all studies demonstrated a significant decrease in tracer transport in KO mice and rats compared to controls. Meta-regression indicated that anesthesia, age, and tracer delivery explain the opposing results. We also report that intrastriatal injections suppress glymphatic function. This validates the role of AQP4 and shows that glymphatic studies must avoid the use of invasive procedures.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Glinfático , Animais , Aquaporina 4/genética , Transporte Biológico , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Camundongos Knockout , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...