Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38656811

RESUMO

Pseudomonas aeruginosa causes chronic lung infection in cystic fibrosis (CF), resulting in structural lung damage and progressive pulmonary decline. P. aeruginosa in the CF lung undergoes numerous changes, adapting to host-specific airway pressures while establishing chronic infection. P. aeruginosa undergoes lipid A structural modification during CF chronic infection, not seen in any other disease state. Lipid A, the membrane anchor of lipopolysaccharide (i.e., endotoxin), comprises the majority of the outer membrane of Gram-negative bacteria and is a potent toll-like receptor (TLR)4 agonist. The structure of P. aeruginosa lipid A is intimately linked with its recognition by TLR4, and subsequent immune response. Prior work has identified P. aeruginosa strains with altered lipid A structures that arise during chronic CF lung infection; however, the impact of P. aeruginosa lipid A structure on airway disease has not been investigated. Here, we show that P. aeruginosa lipid A lacks PagL-mediated deacylation during human airway infection using a direct-from-sample mass spectrometry approach on human bronchoalveolar lavage fluid. This structure triggers increased pro-inflammatory cytokine production by primary human macrophages. Furthermore, alterations in lipid A 2-hydroxylation impact cytokine response in a site-specific manner, independent of CFTR function. Interestingly, there is a CF-specific reduction in IL-8 secretion within the epithelial-cell compartment that only occurs in CF bronchial epithelial cells when infected with CF-adapted P. aeruginosa that lack PagL-mediated lipid A deacylation. Taken together, we show that P. aeruginosa alters its lipid A structure during acute lung infection and that this lipid A structure induces stronger signaling through TLR4.

2.
mBio ; 15(2): e0282323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38131669

RESUMO

Pseudomonas aeruginosa can survive in a myriad of environments, partially due to modifications of its lipid A, the membrane anchor of lipopolysaccharide. We previously demonstrated that divergent late acyltransferase paralogs, HtrB1 and HtrB2, add acyloxyacyl laurate to lipid A 2- and 2'-acyl chains, respectively. The genome of P. aeruginosa also has genes which encode two dioxygenase enzymes, LpxO1 and LpxO2, that individually hydroxylate a specific secondary laurate. LpxO1 acts on the 2'-acyloxyacyl laurate (added by HtrB2), whereas LpxO2 acts on the 2-acyloxyacyl laurate (added by HtrB1) in a site-specific manner. Furthermore, while both enzyme pairs are evolutionarily linked, phylogenomic analysis suggests the LpxO1/HtrB2 enzyme pair as being of ancestral origin, present throughout the Pseudomonas lineage, whereas the LpxO2/HtrB1 enzyme pair likely arose via horizontal gene transfer and has been retained in P. aeruginosa over time. Using a murine pulmonary infection model, we showed that both LpxO1 and LpxO2 enzymes are functional in vivo, as direct analysis of in vivo lipid A structure from bronchoalveolar lavage fluid revealed 2-hydroxylated lipid A. Gene expression analysis reveals increased lpxO2 but unchanged lpxO1 expression in vivo, suggesting differential regulation of these enzymes during infection. We also demonstrate that loss-of-function mutations arise in lpxO1 and lpxO2 during chronic lung infection in people with cystic fibrosis (CF), indicating a potential role for pathogenesis and airway adaptation. Collectively, our study characterizes lipid A 2-hydroxylation during P. aeruginosa airway infection that is regulated by two distinct lipid A dioxygenase enzymes.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes severe infection in hospitalized and chronically ill individuals. During infection, P. aeruginosa undergoes adaptive changes to evade host defenses and therapeutic interventions, increasing mortality and morbidity. Lipid A structural alteration is one such change that P. aeruginosa isolates undergo during chronic lung infection in CF. Investigating genetic drivers of this lipid A structural variation is crucial in understanding P. aeruginosa adaptation during infection. Here, we describe two lipid A dioxygenases with acyl-chain site specificity, each with different evolutionary origins. Further, we show that loss of function in these enzymes occurs in CF clinical isolates, suggesting a potential pathoadaptive phenotype. Studying these bacterial adaptations provides insight into selection pressures of the CF airway on P. aeruginosa phenotypes that persist during chronic infection. Understanding these adaptive changes may ultimately provide clinicians better control over bacterial populations during chronic infection.


Assuntos
Fibrose Cística , Dioxigenases , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Pseudomonas aeruginosa/metabolismo , Lipídeo A/metabolismo , Infecção Persistente , Lauratos/metabolismo , Hidroxilação , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Dioxigenases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...