Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009910

RESUMO

One of the major challenges for blind and visually impaired (BVI) people is traveling safely to cross intersections on foot. Many countries are now generating audible signals at crossings for visually impaired people to help with this problem. However, these accessible pedestrian signals can result in confusion for visually impaired people as they do not know which signal must be interpreted for traveling multiple crosses in complex road architecture. To solve this problem, we propose an assistive system called CAS (Crossing Assistance System) which extends the principle of the BLE (Bluetooth Low Energy) RSSI (Received Signal Strength Indicator) signal for outdoor and indoor location tracking and overcomes the intrinsic limitation of outdoor noise to enable us to locate the user effectively. We installed the system on a real-world intersection and collected a set of data for demonstrating the feasibility of outdoor RSSI tracking in a series of two studies. In the first study, our goal was to show the feasibility of using outdoor RSSI on the localization of four zones. We used a k-nearest neighbors (kNN) method and showed it led to 99.8% accuracy. In the second study, we extended our work to a more complex setup with nine zones, evaluated both the kNN and an additional method, a Support Vector Machine (SVM) with various RSSI features for classification. We found that the SVM performed best using the RSSI average, standard deviation, median, interquartile range (IQR) of the RSSI over a 5 s window. The best method can localize people with 97.7% accuracy. We conclude this paper by discussing how our system can impact navigation for BVI users in outdoor and indoor setups and what are the implications of these findings on the design of both wearable and traffic assistive technology for blind pedestrian navigation.


Assuntos
Pedestres , Tecnologia Assistiva , Pessoas com Deficiência Visual , Cegueira , Humanos , Ruído
2.
Sci Adv ; 4(6): eaat2731, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29963636

RESUMO

We describe a framework for interactive molecular dynamics in a multiuser virtual reality (VR) environment, combining rigorous cloud-mounted atomistic physics simulations with commodity VR hardware, which we have made accessible to readers (see isci.itch.io/nsb-imd). It allows users to visualize and sample, with atomic-level precision, the structures and dynamics of complex molecular structures "on the fly" and to interact with other users in the same virtual environment. A series of controlled studies, in which participants were tasked with a range of molecular manipulation goals (threading methane through a nanotube, changing helical screw sense, and tying a protein knot), quantitatively demonstrate that users within the interactive VR environment can complete sophisticated molecular modeling tasks more quickly than they can using conventional interfaces, especially for molecular pathways and structural transitions whose conformational choreographies are intrinsically three-dimensional. This framework should accelerate progress in nanoscale molecular engineering areas including conformational mapping, drug development, synthetic biology, and catalyst design. More broadly, our findings highlight the potential of VR in scientific domains where three-dimensional dynamics matter, spanning research and education.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA