Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719798

RESUMO

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Assuntos
Neoplasias da Mama , Regulação para Baixo , Transição Epitelial-Mesenquimal , RNA Polimerase I , Teniposídeo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , RNA Polimerase I/metabolismo , Teniposídeo/farmacologia , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
NPJ Precis Oncol ; 7(1): 61, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380890

RESUMO

Hyperactivated ribosome biosynthesis is attributed to a need for elevated protein synthesis that accommodates cell growth and division, and is characterized by nucleomorphometric alterations and increased nucleolar counts. Ribosome biogenesis is challenged when DNA-damaging treatments such as radiotherapy are utilized. Tumor cells that survive radiotherapy form the basis of recurrence, tumor progression, and metastasis. In order to survive and become metabolically revitalized, tumor cells need to reactivate RNA Polymerase I (RNA Pol I) to synthesize ribosomal RNA, an integral component of ribosomes. In this study, we showed that following radiation therapy, tumor cells from breast cancer patients demonstrate activation of a ribosome biosynthesis signature concurrent with enrichment of a signature of Hedgehog (Hh) activity. We hypothesized that GLI1 activates RNA Pol I in response to irradiation and licenses the emergence of a radioresistant tumor population. Our work establishes a novel role for GLI1 in orchestrating RNA Pol I activity in irradiated breast cancer cells. Furthermore, we present evidence that in these irradiated tumor cells, Treacle ribosome biogenesis factor 1 (TCOF1), a nucleolar protein that is important in ribosome biogenesis, facilitates nucleolar translocation of GLI1. Inhibiting Hh activity and RNA Pol I activity disabled the outgrowth of breast cancer cells in the lungs. As such, ribosome biosynthesis and Hh activity present as actionable signaling mechanisms to enhance the effectiveness of radiotherapy.

3.
Cancer Immunol Res ; 11(5): 687-702, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37058110

RESUMO

The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Proteínas Hedgehog/metabolismo , Células Th17 , Transdução de Sinais , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral
4.
Cancer Res ; 82(13): 2344-2353, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303060

RESUMO

Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metástase Neoplásica , Neoplasias , Ribossomos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
5.
Lab Invest ; 101(11): 1439-1448, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34267320

RESUMO

The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.


Assuntos
Nucléolo Celular/efeitos dos fármacos , Flavonóis/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , RNA Polimerase I/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Flavonas/farmacologia , Flavonas/uso terapêutico , Flavonóis/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Neoplasias Pulmonares/secundário , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , RNA Ribossômico/biossíntese
6.
Cancer Res ; 81(21): 5425-5437, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289986

RESUMO

Elevated infiltration of immunosuppressive alternatively polarized (M2) macrophages is associated with poor prognosis in patients with cancer. The tumor microenvironment remarkably orchestrates molecular mechanisms that program these macrophages. Here we identify a novel role for oncogenic Hedgehog (Hh) signaling in programming signature metabolic circuitries that regulate alternative polarization of tumor-associated macrophages. Two immunocompetent orthotopic mouse models of mammary tumors were used to test the effect of inhibiting Hh signaling on tumor-associated macrophages. Treatment with the pharmacologic Hh inhibitor vismodegib induced a significant shift in the profile of tumor-infiltrating macrophages. Mass spectrometry-based metabolomic analysis showed Hh inhibition induced significant alterations in metabolic processes, including metabolic sensing, mitochondrial adaptations, and lipid metabolism. In particular, inhibition of Hh in M2 macrophages reduced flux through the UDP-GlcNAc biosynthesis pathway. Consequently, O-GlcNAc-modification of STAT6 decreased, mitigating the immune-suppressive program of M2 macrophages, and the metabolically demanding M2 macrophages shifted their metabolism and bioenergetics from fatty acid oxidation to glycolysis. M2 macrophages enriched from vismodegib-treated mammary tumors showed characteristically decreased O-GlcNAcylation and altered mitochondrial dynamics. These Hh-inhibited macrophages are reminiscent of inflammatory (M1) macrophages, phenotypically characterized by fragmented mitochondria. This is the first report highlighting the relevance of Hh signaling in controlling a complex metabolic network in immune cells. These data describe a novel immunometabolic function of Hh signaling that can be clinically exploited. SIGNIFICANCE: These findings illustrate that Hh activity regulates a metabolic and bioenergetic regulatory program in tumor-associated macrophages that promotes their immune-suppressive polarization.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proteínas Hedgehog/metabolismo , Metaboloma , Mitocôndrias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Proliferação de Células , Metabolismo Energético , Feminino , Glicólise , Proteínas Hedgehog/genética , Humanos , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA-Seq , Transcriptoma , Células Tumorais Cultivadas , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncogenesis ; 10(6): 45, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078871

RESUMO

Molecular dynamics of developmental processes are repurposed by cancer cells to support cancer initiation and progression. Disruption of the delicate balance between cellular differentiation and plasticity during mammary development leads to breast cancer initiation and metastatic progression. STAT5A is essential for differentiation of secretory mammary alveolar epithelium. Active STAT5A characterizes breast cancer patients for favorable prognosis. N-Myc and STAT Interactor protein (NMI) was initially discovered as a protein that interacts with various STATs; however, the relevance of these interactions to normal mammary development and cancer was not known. We observe that NMI protein is expressed in the mammary ductal epithelium at the onset of puberty and is induced in pregnancy. NMI protein is decreased in 70% of patient specimens with metastatic breast cancer compared to primary tumors. Here we present our finding that NMI and STAT5A cooperatively mediate normal mammary development. Loss of NMI in vivo caused a decrease in STAT5A activity in normal mammary epithelial as well as breast cancer cells. Analysis of STAT5A mammary specific controlled genetic program in the context of NMI knockout revealed ISG20 (interferon stimulated exonuclease gene 20, a protein involved in rRNA biogenesis) as an unfailing negatively regulated target. Role of ISG20 has never been described in metastatic process of mammary tumors. We observed that overexpression of ISG20 is increased in metastases compared to matched primary breast tumor tissues. Our observations reveal that NMI-STAT5A mediated signaling keeps a check on ISG20 expression via miR-17-92 cluster. We show that uncontrolled ISG20 expression drives tumor progression and metastasis.

8.
Cancer Lett ; 517: 24-34, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052331

RESUMO

Obesity and diabetes cumulatively create a distinct systemic metabolic pathophysiological syndrome that predisposes patients to several diseases including breast cancer. Moreover, diabetic and obese women with breast cancer show a significant increase in mortality compared to non-obese and/or non-diabetic women. We hypothesized that these metabolic conditions incite an aggressive tumor phenotype by way of impacting tumor cell-autonomous and tumor cell non-autonomous events. In this study, we established a type 2 diabetic mouse model of triple-negative mammary carcinoma and investigated the effect of a glucose lowering therapy, metformin, on the overall tumor characteristics and immune/metabolic microenvironment. Diabetic mice exhibited larger mammary tumors that had increased adiposity with high levels of O-GlcNAc protein post-translational modification. These tumors also presented with a distinct stromal profile characterized by altered collagen architecture, increased infiltration by tumor-permissive M2 macrophages, and early metastatic seeding compared to non-diabetic/lean mice. Metformin treatment of the diabetic/obese mice effectively normalized glucose levels, reconfigured the mammary tumor milieu, and decreased metastatic seeding. Our results highlight the impact of two metabolic complications of obesity and diabetes on tumor cell attributes and showcase metformin's ability to revert tumor cell and stromal changes induced by an obese and diabetic host environment.


Assuntos
Neoplasias da Mama/metabolismo , Glucose/metabolismo , Neoplasias Mamárias Animais/metabolismo , Síndrome Metabólica/metabolismo , Microambiente Tumoral/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/metabolismo
9.
Cell Death Dis ; 12(3): 242, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664239

RESUMO

Triple-negative breast cancer (TNBC) patients with upregulated Wnt/ß-catenin signaling often have poor clinical prognoses. During pathological examinations of breast cancer sections stained for ß-catenin, we made the serendipitous observation that relative to non-TNBC, specimens from TNBC patients have a greater abundance of nucleoli. There was a remarkable direct relationship between nuclear ß-catenin and greater numbers of nucleoli in TNBC tissues. These surprising observations spurred our investigations to decipher the differential functional relevance of the nucleolus in TNBC versus non-TNBC cells. Comparative nucleolar proteomics revealed that the majority of the nucleolar proteins in TNBC cells were potential targets of ß-catenin signaling. Next, we undertook an analysis of the nucleolar proteome in TNBC cells in response to ß-catenin inhibition. This effort revealed that a vital component of pre-rRNA processing, LAS1 like ribosome biogenesis factor (LAS1L) was significantly decreased in the nucleoli of ß-catenin inhibited TNBC cells. Here we demonstrate that LAS1L protein expression is significantly elevated in TNBC patients, and it functionally is important for mammary tumor growth in xenograft models and enables invasive attributes. Our observations highlight a novel function for ß-catenin in orchestrating nucleolar activity in TNBCs.


Assuntos
Nucléolo Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , beta Catenina/metabolismo , Animais , Nucléolo Celular/genética , Nucléolo Celular/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Proteoma , Proteômica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral , Via de Sinalização Wnt , beta Catenina/genética
10.
Mol Oncol ; 15(4): 942-956, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410252

RESUMO

The expression of Merlin tumor suppressor protein encoded by Neurofibromin 2 (NF2) gene is remarkably decreased in metastatic breast cancer tissues. In order to recapitulate clinical evidence, we generated a unique, conditional Nf2-knockout (Nf2-/- ) mouse mammary tumor model. Merlin-deficient breast tumor cells and Nf2-/- mouse embryonic fibroblasts (MEFs) displayed a robustly invasive phenotype. Moreover, Nf2-/- MEFs presented with notable alterations in redox management networks, implicating a role for Merlin in redox homeostasis. This programmatic alteration resonated with pathways that emerged from breast tumor cells engineered for Merlin deficiency. Further investigations revealed that NF2-silenced cells supported reduced activity of the Nuclear factor, erythroid 2 like 2 antioxidant transcription factor, concomitant with elevated expression of NADPH oxidase enzymes. Importantly, mammary-specific Nf2-/- in an Mouse mammary tumor virus Neu + murine breast cancer model demonstrated accelerated mammary carcinogenesis in vivo. Tumor-derived primary organoids and cell lines were characteristically invasive with evidence of a dysregulated cellular redox management system. As such, Merlin deficiency programmatically influences redox imbalance that orchestrates malignant attributes of mammary/breast cancer.


Assuntos
Neoplasias da Mama/genética , Neurofibromina 2/genética , Oxirredução , Animais , Antioxidantes/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fibroblastos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estresse Oxidativo
11.
iScience ; 24(1): 102010, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490918

RESUMO

Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate "specialized ribosomes" that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia.

12.
Nucleic Acids Res ; 48(18): 10342-10352, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32894284

RESUMO

Ribosomal DNA (rDNA) consists of highly repeated sequences that are prone to incurring damage. Delays or failure of rDNA double-strand break (DSB) repair are deleterious, and can lead to rDNA transcriptional arrest, chromosomal translocations, genomic losses, and cell death. Here, we show that the zinc-finger transcription factor GLI1, a terminal effector of the Hedgehog (Hh) pathway, is required for the repair of rDNA DSBs. We found that GLI1 is activated in triple-negative breast cancer cells in response to ionizing radiation (IR) and localizes to rDNA sequences in response to both global DSBs generated by IR and site-specific DSBs in rDNA. Inhibiting GLI1 interferes with rDNA DSB repair and impacts RNA polymerase I activity and cell viability. Our findings tie Hh signaling to rDNA repair and this heretofore unknown function may be critically important in proliferating cancer cells.


Assuntos
DNA Ribossômico/genética , Proteínas Hedgehog/genética , RNA Polimerase I/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Proteína GLI1 em Dedos de Zinco/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA Ribossômico/efeitos da radiação , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos da radiação , Humanos , RNA Polimerase I/efeitos da radiação , Radiação Ionizante , Ribossomos/genética , Ribossomos/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Cell Mol Life Sci ; 76(22): 4511-4524, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31338556

RESUMO

The nucleolus is a sub-nuclear body known primarily for its role in ribosome biogenesis. Increased number and/or size of nucleoli have historically been used by pathologists as a prognostic indicator of cancerous lesions. This increase in nucleolar number and/or size is classically attributed to the increased need for protein synthesis in cancer cells. However, evidences suggest that the nucleolus plays critical roles in many cellular functions in both normal cell biology and disease pathologies, including cancer. As new functions of the nucleolus are elucidated, there is mounting evidence to support the role of the nucleolus in regulating additional cellular functions, particularly response to cellular stressors, maintenance of genome stability, and DNA damage repair, as well as the regulation of gene expression and biogenesis of several ribonucleoproteins. This review highlights the central role of the nucleolus in carcinogenesis and cancer progression and discusses how cancer cells may become "addicted" to nucleolar functions.


Assuntos
Nucléolo Celular/fisiologia , Neoplasias/patologia , Animais , Carcinogênese/patologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Progressão da Doença , Instabilidade Genômica/fisiologia , Humanos
14.
Oncoimmunology ; 8(3): 1548241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723576

RESUMO

Host responses to tumor cells include tumor suppressing or promoting mechanisms. We sought to detail the effect of Hedgehog (Hh) pathway inhibition on the composition of the mammary tumor immune portfolio. We hypothesized that Hh signaling mediates a crosstalk between breast cancer cells and macrophages that dictates alternative polarization of macrophages and consequently supports a tumor-promoting microenvironment. We used an immunocompetent, syngeneic mouse mammary cancer model to inhibit Hh signaling with the pharmacological inhibitor, Vismodegib. Using molecular and functional assays, we identified that Hedgehog (Hh) signaling mediates a molecular crosstalk between mammary cancer cells and macrophages that culminates in alternative polarization of macrophages. We carried out an unbiased kinomics and genomics assessment to unravel changes in global kinomic and gene signatures impacted by Hh signaling. Our investigations reveal that in an immunocompetent mammary cancer model, the administration of Vismodegib led to changes in the portfolio of tumor-infiltrating immune cells. This was characterized by a marked reduction in immune-suppressive innate and adaptive cells concomitant with an enrichment of cytotoxic immune cells. Breast cancer cells induce M2 polarization of macrophages via a crosstalk mediated by Hh ligands that alters critical kinomic and genomic signatures. Macrophage depletion improved the benefit of Hedgehog inhibition on eliciting an immunogenic, pro-inflammatory profile. We define a novel role for Hh signaling in disabling anti-tumor immunity. Inhibition of Hh signaling presents with dual advantages of tumor cell-targeting as well as re-educating a dysfunctional tumor microenvironment.

15.
Lab Invest ; 99(2): 260-270, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420690

RESUMO

Modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) promotes tumor cell survival, proliferation, epigenetic changes, angiogenesis, invasion, and metastasis. Here we demonstrate that in conditions of elevated glucose, there is increased expression of key drug resistance proteins (ABCB1, ABCG2, ERCC1, and XRCC1), all of which are regulated by the Hedgehog pathway. In elevated glucose conditions, we determined that the Hedgehog pathway transcription factors, GLI1 and GLI2, are modified by O-GlcNAcylation. This modification functionally enhanced their transcriptional activity. The activity of GLI was enhanced when O-GlcNAcase was inhibited, while inhibiting O-GlcNAc transferase caused a decrease in GLI activity. The metabolic impact of hyperglycemic conditions impinges on maintaining PKM2 in the less active state that facilitates the availability of glycolytic intermediates for biosynthetic pathways. Interestingly, under elevated glucose conditions, PKM2 directly influenced GLI activity. Specifically, abrogating PKM2 expression caused a significant decline in GLI activity and expression of drug resistance proteins. Cumulatively, our results suggest that elevated glucose conditions upregulate chemoresistance through elevated transcriptional activity of the Hedgehog/GLI pathway. Interfering in O-GlcNAcylation of the GLI transcription factors may be a novel target in controlling cancer progression and drug resistance of breast cancer.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Proteínas Hedgehog/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Hiperglicemia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
16.
Oncogene ; 37(12): 1610-1623, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326438

RESUMO

The process of organ development requires a delicate balance between cellular plasticity and differentiation. This balance is disrupted in cancer initiation and progression. N-Myc and STAT interactor (NMI: human or Nmi: murine) has emerged as a relevant player in the etiology of breast cancer. However, a fundamental understanding of its relevance to normal mammary biology is lacking. To gain insight into its normal function in mammary gland, we generated a mammary-specific Nmi knockout mouse model. We observed that Nmi protein expression is induced in mammary epithelium at the onset of pregnancy, in luminal cells and persists throughout lactation. Nmi knockout results in a precocious alveolar phenotype. These alveoli exhibit an extensive presence of nuclear ß-catenin and enhanced Wnt/ß-catenin signaling. The Nmi knockout pubertal ductal tree shows enhanced invasion of the mammary fatpad and increased terminal end bud numbers. Tumors from Nmi null mammary epithelium show a significant enrichment of poorly differentiated cells with elevated stem/progenitor markers, active Wnt/ß-catenin signaling, highly invasive morphology as well as, increased number of distant metastases. Our study demonstrates that Nmi has a distinct role in the differentiation process of mammary luminal epithelial cell compartment and developmental aberrations resulting from Nmi absence contribute to metastasis and demonstrates that aberration in normal developmental program can lead to metastatic disease, highlighting the contribution and importance of luminal progenitor cells in driving metastatic disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Organogênese/genética , Animais , Mama/crescimento & desenvolvimento , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Células Cultivadas , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica
17.
Oncotarget ; 7(14): 17991-8005, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26908451

RESUMO

The expression of the tumor suppressor Merlin is compromised in nervous system malignancies due to genomic aberrations. We demonstrated for the first time, that in breast cancer, Merlin protein expression is lost due to proteasome-mediated elimination. Immunohistochemical analysis of tumor tissues from patients with metastatic breast cancer revealed characteristically reduced Merlin expression. Importantly, we identified a functional role for Merlin in impeding breast tumor xenograft growth and reducing invasive characteristics. We sought to determine a possible mechanism by which Merlin accomplishes this reduction in malignant activity. We observed that breast and pancreatic cancer cells with loss of Merlin show an aberrant increase in the activity of ß-catenin concomitant with nuclear localization of ß-catenin. We discovered that Merlin physically interacts with ß-catenin, alters the sub-cellular localization of ß-catenin, and significantly reduces the protein levels of ß-catenin by targeting it for degradation through the upregulation of Axin1. Consequently, restoration of Merlin inhibited ß-catenin-mediated transcriptional activity in breast and pancreatic cancer cells. We also present evidence that loss of Merlin sensitizes tumor cells to inhibition by compounds that target ß-catenin-mediated activity. Thus, this study provides compelling evidence that Merlin reduces the malignant activity of pancreatic and breast cancer, in part by suppressing the Wnt/ß-catenin pathway. Given the potent role of Wnt/ß-catenin signaling in breast and pancreatic cancer and the flurry of activity to test ß-catenin inhibitors in the clinic, our findings are opportune and provide evidence for Merlin in restraining aberrant activation of Wnt/ß-catenin signaling.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neurofibromina 2/deficiência , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Células MCF-7 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neoplasias Pancreáticas/patologia , Ativação Transcricional , Transfecção , Regulação para Cima , beta Catenina/metabolismo
18.
Sci Rep ; 5: 11995, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26146406

RESUMO

We have previously reported that expression of NMI (N-myc and STAT interactor) is compromised in invasive breast cancers. We also demonstrated that loss of NMI expression promotes epithelial-mesenchymal-transition and results in enhanced invasive ability of breast cancer cells. Additionally we had demonstrated that restoration of NMI expression reduced breast cancer xenograft growth and downregulated Wnt and TGFß/SMAD signaling. Here we present our observations that NMI expression drives autophagy. Our studies were promoted by our observation that NMI expressing breast cancer cells showed autophagic vacuoles and LC3 processing. Additionally, we found that NMI expression increased the cisplatin sensitivity of the breast cancer cells. Our mechanistic investigations show that NMI prompts activation of GSK3-ß. This multifunctional kinase is an upstream effector of the TSC1/TSC2 complex that regulates mTOR signaling. Inhibition of GSK3-ß activity in NMI expressing cells activated mTOR signaling and decreased the cells' autophagic response. Additionally we demonstrate that a key component of autophagy, DNA-damage regulated autophagy modulator 1 (DRAM1), is regulated by NMI. Our TCGA database analysis reveals concurrent expression of NMI and DRAM1 in breast cancer specimens. We present evidence that NMI sensitizes breast cancer cells to cisplatin treatment through DRAM1 dependent autophagy.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Cisplatino/toxicidade , Doxorrubicina/uso terapêutico , Doxorrubicina/toxicidade , Feminino , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transplante Heterólogo
19.
Mol Cancer ; 13: 200, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25174825

RESUMO

BACKGROUND: N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis. METHOD: Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3ß phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses. RESULTS: Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/ß-catenin signaling resulting from inactivation of GSK3ß. CONCLUSION: Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Algoritmos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Transição Epitelial-Mesenquimal , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais
20.
Mol Cancer Ther ; 13(4): 800-11, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24552774

RESUMO

Basal-like breast cancers (BLBC) are poorly differentiated and display aggressive clinical behavior. These tumors become resistant to cytotoxic agents, and tumor relapse has been attributed to the presence of cancer stem cells (CSC). One of the pathways involved in CSC regulation is the Wnt/ß-catenin signaling pathway. LRP6, a Wnt ligand receptor, is one of the critical elements of this pathway and could potentially be an excellent therapeutic target. Niclosamide has been shown to inhibit the Wnt/ß-catenin signaling pathway by causing degradation of LRP6. TRA-8, a monoclonal antibody specific to TRAIL death receptor 5, is cytotoxic to BLBC cell lines and their CSC-enriched populations. The goal of this study was to examine whether niclosamide is cytotoxic to BLBCs, specifically the CSC population, and if in combination with TRA-8 could produce increased cytotoxicity. Aldehyde dehydrogenase (ALDH) is a known marker of CSCs. By testing BLBC cells for ALDH expression by flow cytometry, we were able to isolate a nonadherent population of cells that have high ALDH expression. Niclosamide showed cytotoxicity against these nonadherent ALDH-expressing cells in addition to adherent cells from four BLBC cell lines: 2LMP, SUM159, HCC1187, and HCC1143. Niclosamide treatment produced reduced levels of LRP6 and ß-catenin, which is a downstream Wnt/ß-catenin signaling protein. The combination of TRA-8 and niclosamide produced additive cytotoxicity and a reduction in Wnt/ß-catenin activity. Niclosamide in combination with TRA-8 suppressed growth of 2LMP orthotopic tumor xenografts. These results suggest that niclosamide or congeners of this agent may be useful for the treatment of BLBC.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasia de Células Basais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Niclosamida/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Nus , Neoplasia de Células Basais/patologia , Niclosamida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA