Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 16(8): 2065-2074, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32003382

RESUMO

We use continuum simulations to study the impact of anisotropic hydrodynamic friction on the emergent flows of active nematics. We show that, depending on whether the active particles align with or tumble in their collectively self-induced flows, anisotropic friction can result in markedly different patterns of motion. In a flow-aligning regime and at high anisotropic friction, the otherwise chaotic flows are streamlined into flow lanes with alternating directions, reproducing the experimental laning state that has been obtained by interfacing microtubule-motor protein mixtures with smectic liquid crystals. Within a flow-tumbling regime, however, we find that no such laning state is possible. Instead, the synergistic effects of friction anisotropy and flow tumbling can lead to the emergence of bound pairs of topological defects that align at an angle to the easy flow direction and navigate together throughout the domain. In addition to confirming the mechanism behind the laning states observed in experiments, our findings emphasise the role of the flow aligning parameter in the dynamics of active nematics.

2.
Phys Rev Lett ; 123(20): 208001, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809098

RESUMO

We present a generic framework for modeling three-dimensional deformable shells of active matter that captures the orientational dynamics of the active particles and hydrodynamic interactions on the shell and with the surrounding environment. We find that the cross talk between the self-induced flows of active particles and dynamic reshaping of the shell can result in conformations that are tunable by varying the form and magnitude of active stresses. We further demonstrate and explain how self-induced topological defects in the active layer can direct the morphodynamics of the shell. These findings are relevant to understanding morphological changes during organ development and the design of bioinspired materials that are capable of self-organization.

3.
J Chem Phys ; 150(6): 064909, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769984

RESUMO

We numerically study the dynamics of two-dimensional blue phases in active chiral liquid crystals. We show that introducing contractile activity results in stabilised blue phases, while small extensile activity generates ordered but dynamic blue phases characterised by coherently moving half-skyrmions and disclinations. Increasing extensile activity above a threshold leads to the dissociation of the half-skyrmions and active turbulence. We further analyse isolated active half-skyrmions in an isotropic background and compare the activity-induced velocity fields in simulations to an analytical prediction of the flow. Finally, we show that confining an active blue phase can give rise to a system-wide circulation, in which half-skyrmions and disclinations rotate together.

4.
Phys Rev E ; 96(2-1): 022706, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950460

RESUMO

The occurrence of new textures of liquid crystals is an important factor in tuning their optical and photonics properties. Here, we show, both experimentally and by numerical computation, that under an electric field chitin tactoids (i.e., nematic droplets) can stretch to aspect ratios of more than 15, leading to a transition from a spindlelike to a cigarlike shape. We argue that the large extensions occur because the elastic contribution to the free energy is dominated by the anchoring. We demonstrate that the elongation involves hydrodynamic flow and is reversible: the tactoids return to their original shapes upon removing the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...