Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767330

RESUMO

A protein's genetic architecture - the set of causal rules by which its sequence produces its functions - also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest - excluding the vast majority of possible genotypes and evolutionary trajectories - and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor's specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor's capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.


Assuntos
Epistasia Genética , Evolução Molecular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , DNA/genética , DNA/metabolismo , Mutação , Ligação Proteica
2.
PLoS Biol ; 22(5): e3002627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758732

RESUMO

The relationship between genetic code robustness and protein evolvability is unknown. A new study in PLOS Biology using in silico rewiring of genetic codes and functional protein data identified a positive correlation between code robustness and protein evolvability that is protein-specific.


Assuntos
Evolução Molecular , Código Genético , Proteínas , Proteínas/genética , Proteínas/metabolismo , Modelos Genéticos
3.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37732229

RESUMO

How complicated is the genetic architecture of proteins - the set of causal effects by which sequence determines function? High-order epistatic interactions among residues are thought to be pervasive, making a protein's function difficult to predict or understand from its sequence. Most studies, however, used methods that overestimate epistasis, because they analyze genetic architecture relative to a designated reference sequence - causing measurement noise and small local idiosyncrasies to propagate into pervasive high-order interactions - or have not effectively accounted for global nonlinearity in the sequence-function relationship. Here we present a new reference-free method that jointly estimates global nonlinearity and specific epistatic interactions across a protein's entire genotype-phenotype map. This method yields a maximally efficient explanation of a protein's genetic architecture and is more robust than existing methods to measurement noise, partial sampling, and model misspecification. We reanalyze 20 combinatorial mutagenesis experiments from a diverse set of proteins and find that additive and pairwise effects, along with a simple nonlinearity to account for limited dynamic range, explain a median of 96% of total variance in measured phenotypes (and >92% in every case). Only a tiny fraction of genotypes are strongly affected by third- or higher-order epistasis. Genetic architecture is also sparse: the number of terms required to explain the vast majority of variance is smaller than the number of genotypes by many orders of magnitude. The sequence-function relationship in most proteins is therefore far simpler than previously thought, opening the way for new and tractable approaches to characterize it.

4.
Science ; 376(6595): 823-830, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587978

RESUMO

Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive data are available on the extent and temporal dynamics of changes in the effects of mutations as protein sequences evolve. Here, we use phylogenetic deep mutational scanning to measure the functional effect of every possible amino acid mutation in a series of ancestral and extant steroid receptor DNA binding domains. Across 700 million years of evolution, epistatic interactions caused the effects of most mutations to become decorrelated from their initial effects and their windows of evolutionary accessibility to open and close transiently. Most effects changed gradually and without bias at rates that were largely constant across time, indicating a neutral process caused by many weak epistatic interactions. Our findings show that protein sequences drift inexorably into contingency and unpredictability, but that the process is statistically predictable, given sufficient phylogenetic and experimental data.


Assuntos
Proteínas de Ligação a DNA , Epistasia Genética , Evolução Molecular , Receptores de Esteroides , Sequência de Aminoácidos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Mutação , Filogenia , Ligação Proteica , Domínios Proteicos , Receptores de Esteroides/química , Receptores de Esteroides/genética
5.
Nature ; 588(7838): 503-508, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299178

RESUMO

Most proteins assemble into multisubunit complexes1. The persistence of these complexes across evolutionary time is usually explained as the result of natural selection for functional properties that depend on multimerization, such as intersubunit allostery or the capacity to do mechanical work2. In many complexes, however, multimerization does not enable any known function3. An alternative explanation is that multimers could become entrenched if substitutions accumulate that are neutral in multimers but deleterious in monomers; purifying selection would then prevent reversion to the unassembled form, even if assembly per se does not enhance biological function3-7. Here we show that a hydrophobic mutational ratchet systematically entrenches molecular complexes. By applying ancestral protein reconstruction and biochemical assays to the evolution of steroid hormone receptors, we show that an ancient hydrophobic interface, conserved for hundreds of millions of years, is entrenched because exposure of this interface to solvent reduces protein stability and causes aggregation, even though the interface makes no detectable contribution to function. Using structural bioinformatics, we show that a universal mutational propensity drives sites that are buried in multimeric interfaces to accumulate hydrophobic substitutions to levels that are not tolerated in monomers. In a database of hundreds of families of multimers, most show signatures of long-term hydrophobic entrenchment. It is therefore likely that many protein complexes persist because a simple ratchet-like mechanism entrenches them across evolutionary time, even when they are functionally gratuitous.


Assuntos
Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Sítios de Ligação/genética , DNA/metabolismo , Humanos , Ligantes , Modelos Moleculares , Complexos Multiproteicos/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Agregados Proteicos , Domínios Proteicos , Multimerização Proteica/genética , Estabilidade Proteica , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Solventes/química
6.
Evol Lett ; 3(5): 448-461, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636938

RESUMO

Heritable variation in gene expression is common within species. Much of this variation is due to genetic differences outside of the gene with altered expression and is trans-acting. This trans-regulatory variation is often polygenic, with individual variants typically having small effects, making the genetic architecture and evolution of trans-regulatory variation challenging to study. Consequently, key questions about trans-regulatory variation remain, including the variability of trans-regulatory variation within a species, how selection affects trans-regulatory variation, and how trans-regulatory variants are distributed throughout the genome and within a species. To address these questions, we isolated and measured trans-regulatory differences affecting TDH3 promoter activity among 56 strains of Saccharomyces cerevisiae, finding that trans-regulatory backgrounds varied approximately twofold in their effects on TDH3 promoter activity. Comparing this variation to neutral models of trans-regulatory evolution based on empirical measures of mutational effects revealed that despite this variability in the effects of trans-regulatory backgrounds, stabilizing selection has constrained trans-regulatory differences within this species. Using a powerful quantitative trait locus mapping method, we identified ∼100 trans-acting expression quantitative trait locus in each of three crosses to a common reference strain, indicating that regulatory variation is more polygenic than previous studies have suggested. Loci altering expression were located throughout the genome, and many loci were strain specific. This distribution and prevalence of alleles is consistent with recent theories about the genetic architecture of complex traits. In all mapping experiments, the nonreference strain alleles increased and decreased TDH3 promoter activity with similar frequencies, suggesting that stabilizing selection maintained many trans-acting variants with opposing effects. This variation may provide the raw material for compensatory evolution and larger scale regulatory rewiring observed in developmental systems drift among species.

7.
Proc Natl Acad Sci U S A ; 114(52): E11218-E11227, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29259117

RESUMO

Phenotypic plasticity is an evolvable property of biological systems that can arise from environment-specific regulation of gene expression. To better understand the evolutionary and molecular mechanisms that give rise to plasticity in gene expression, we quantified the effects of 235 single-nucleotide mutations in the Saccharomyces cerevisiae TDH3 promoter (PTDH3 ) on the activity of this promoter in media containing glucose, galactose, or glycerol as a carbon source. We found that the distributions of mutational effects differed among environments because many mutations altered the plastic response exhibited by the wild-type allele. Comparing the effects of these mutations with the effects of 30 PTDH3 polymorphisms on expression plasticity in the same environments provided evidence of natural selection acting to prevent the plastic response in PTDH3 activity between glucose and galactose from becoming larger. The largest changes in expression plasticity were observed between fermentable (glucose or galactose) and nonfermentable (glycerol) carbon sources and were caused by mutations located in the RAP1 and GCR1 transcription factor binding sites. Mutations altered expression plasticity most frequently between the two fermentable environments, with mutations causing significant changes in plasticity between glucose and galactose distributed throughout the promoter, suggesting they might affect chromatin structure. Taken together, these results provide insight into the molecular mechanisms underlying gene-by-environment interactions affecting gene expression as well as the evolutionary dynamics affecting natural variation in plasticity of gene expression.


Assuntos
Alelos , Regulação Fúngica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Mutação Puntual , Elementos de Resposta , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Galactose/metabolismo , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/biossíntese , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Biol Evol ; 34(10): 2486-2502, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472365

RESUMO

The budding yeast Saccharomyces cerevisiae is the best studied eukaryote in molecular and cell biology, but its utility for understanding the genetic basis of phenotypic variation in natural populations is limited by inefficient association mapping due to strong and complex population structure. To overcome this challenge, we generated genome sequences for 85 strains and performed a comprehensive population genomic survey of a total of 190 diverse strains. We identified considerable variation in population structure among chromosomes and identified 181 genes that are absent from the reference genome. Many of these nonreference genes are expressed and we functionally confirmed that two of these genes confer increased resistance to antifungals. Next, we simultaneously measured the growth rates of over 4,500 laboratory strains, each of which lacks a nonessential gene, and 81 natural strains across multiple environments using unique DNA barcode present in each strain. By combining the genome-wide reverse genetic information gained from the gene deletion strains with a genome-wide association analysis from the natural strains, we identified genomic regions associated with fitness variation in natural populations. To experimentally validate a subset of these associations, we used reciprocal hemizygosity tests, finding that while the combined forward and reverse genetic approaches can identify a single causal gene, the phenotypic consequences of natural genetic variation often follow a complicated pattern. The resources and approach provided outline an efficient and reliable route to association mapping in yeast and significantly enhance its value as a model for understanding the genetic mechanisms underlying phenotypic variation and evolution in natural populations.


Assuntos
Aptidão Genética/genética , Genética Reversa/métodos , Saccharomyces cerevisiae/genética , Proliferação de Células/genética , Mapeamento Cromossômico/métodos , Variação Genética/genética , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética
9.
Genome Biol Evol ; 9(4): 843-854, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338820

RESUMO

Heritable changes in gene expression are important contributors to phenotypic differences within and between species and are caused by mutations in cis-regulatory elements and trans-regulatory factors. Although previous work has suggested that cis-regulatory differences preferentially accumulate with time, technical restrictions to closely related species and limited comparisons have made this observation difficult to test. To address this problem, we used allele-specific RNA-seq data from Saccharomyces species and hybrids to expand both the evolutionary timescale and number of species in which the evolution of regulatory divergence has been investigated. We find that as sequence divergence increases, cis-regulatory differences do indeed become the dominant type of regulatory difference between species, ultimately becoming a better predictor of expression divergence than trans-regulatory divergence. When both cis- and trans-regulatory differences accumulate for the same gene, they more often have effects in opposite directions than in the same direction, indicating widespread compensatory changes underlying the evolution of gene expression. The frequency of compensatory changes within and between species and the magnitude of effect for the underlying cis- and trans-regulatory differences suggests that compensatory changes accumulate primarily due to selection against divergence in gene expression as a result of weak stabilizing selection on gene expression levels. These results show that cis-regulatory differences and compensatory changes in regulation play increasingly important roles in the evolution of gene expression as time increases.


Assuntos
Evolução Molecular , Variação Genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Regulação Fúngica da Expressão Gênica , Saccharomyces/genética , Especificidade da Espécie
10.
Mol Biol Evol ; 33(5): 1131-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26782996

RESUMO

Heritable differences in gene expression are caused by mutations in DNA sequences encoding cis-regulatory elements and trans-regulatory factors. These two classes of regulatory change differ in their relative contributions to expression differences in natural populations because of the combined effects of mutation and natural selection. Here, we investigate how new mutations create the regulatory variation upon which natural selection acts by quantifying the frequencies and effects of hundreds of new cis- and trans-acting mutations altering activity of the TDH3 promoter in the yeast Saccharomyces cerevisiae in the absence of natural selection. We find that cis-regulatory mutations have larger effects on expression than trans-regulatory mutations and that while trans-regulatory mutations are more common overall, cis- and trans-regulatory changes in expression are equally abundant when only the largest changes in expression are considered. In addition, we find that cis-regulatory mutations are skewed toward decreased expression while trans-regulatory mutations are skewed toward increased expression. We also measure the effects of cis- and trans-regulatory mutations on the variability in gene expression among genetically identical cells, a property of gene expression known as expression noise, finding that trans-regulatory mutations are much more likely to decrease expression noise than cis-regulatory mutations. Because new mutations are the raw material upon which natural selection acts, these differences in the frequencies and effects of cis- and trans-regulatory mutations should be considered in models of regulatory evolution.


Assuntos
Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética/métodos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Sequência de Bases , Evolução Molecular , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Mutação , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética
11.
Nature ; 521(7552): 344-7, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25778704

RESUMO

Genetic variation segregating within a species reflects the combined activities of mutation, selection, and genetic drift. In the absence of selection, polymorphisms are expected to be a random subset of new mutations; thus, comparing the effects of polymorphisms and new mutations provides a test for selection. When evidence of selection exists, such comparisons can identify properties of mutations that are most likely to persist in natural populations. Here we investigate how mutation and selection have shaped variation in a cis-regulatory sequence controlling gene expression by empirically determining the effects of polymorphisms segregating in the TDH3 promoter among 85 strains of Saccharomyces cerevisiae and comparing their effects to a distribution of mutational effects defined by 236 point mutations in the same promoter. Surprisingly, we find that selection on expression noise (that is, variability in expression among genetically identical cells) appears to have had a greater impact on sequence variation in the TDH3 promoter than selection on mean expression level. This is not necessarily because variation in expression noise impacts fitness more than variation in mean expression level, but rather because of differences in the distributions of mutational effects for these two phenotypes. This study shows how systematically examining the effects of new mutations can enrich our understanding of evolutionary mechanisms. It also provides rare empirical evidence of selection acting on expression noise.


Assuntos
Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Seleção Genética/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Mutação/genética , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética
12.
G3 (Bethesda) ; 4(7): 1205-16, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24789747

RESUMO

Genetic variants identified by mapping are biased toward large phenotypic effects because of methodologic challenges for detecting genetic variants with small phenotypic effects. Recently, bulk segregant analysis combined with next-generation sequencing (BSA-seq) was shown to be a powerful and cost-effective way to map small effect variants in natural populations. Here, we examine the power of BSA-seq for efficiently mapping small effect mutations isolated from a mutagenesis screen. Specifically, we determined the impact of segregant population size, intensity of phenotypic selection to collect segregants, number of mitotic generations between meiosis and sequencing, and average sequencing depth on power for mapping mutations with a range of effects on the phenotypic mean and standard deviation as well as relative fitness. We then used BSA-seq to map the mutations responsible for three ethyl methanesulfonate-induced mutant phenotypes in Saccharomyces cerevisiae. These mutants display small quantitative variation in the mean expression of a fluorescent reporter gene (-3%, +7%, and +10%). Using a genetic background with increased meiosis rate, a reliable mating type marker, and fluorescence-activated cell sorting to efficiently score large segregating populations and isolate cells with extreme phenotypes, we successfully mapped and functionally confirmed a single point mutation responsible for the mutant phenotype in all three cases. Our simulations and experimental data show that the effects of a causative site not only on the mean phenotype, but also on its standard deviation and relative fitness should be considered when mapping genetic variants in microorganisms such as yeast that require population growth steps for BSA-seq.


Assuntos
Mapeamento Cromossômico , Projetos de Pesquisa , Saccharomyces cerevisiae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Reporter , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Sítio-Dirigida , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...