Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Diagn Ther ; 27(6): 753-768, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632661

RESUMO

BACKGROUND: Highly sensitive molecular assays have been developed to detect plasma-based circulating tumor DNA (ctDNA), and emerging evidence suggests their clinical utility for monitoring minimal residual disease and recurrent disease, providing prognostic information, and monitoring therapy responses in patients with solid tumors. The Invitae Personalized Cancer Monitoring™ assay uses a patient-specific, tumor-informed variant signature identified through whole exome sequencing to detect ctDNA in peripheral blood of patients with solid tumors. METHODS: The assay's tumor whole exome sequencing and ctDNA detection components were analytically validated using 250 unique human specimens and nine commercial reference samples that generated 1349 whole exome sequencing and cell-free DNA (cfDNA)-derived libraries. A comparison of tumor and germline whole exome sequencing was used to identify patient-specific tumor variant signatures and generate patient-specific panels, followed by targeted next-generation sequencing of plasma-derived cfDNA using the patient-specific panels with anchored multiplex polymerase chain reaction chemistry leveraging unique molecular identifiers. RESULTS: Whole exome sequencing resulted in overall sensitivity of 99.8% and specificity of > 99.9%. Patient-specific panels were successfully designed for all 63 samples (100%) with ≥ 20% tumor content and 24 (80%) of 30 samples with ≥ 10% tumor content. Limit of blank studies using 30 histologically normal, formalin-fixed paraffin-embedded specimens resulted in 100% expected panel design failure. The ctDNA detection component demonstrated specificity of > 99.9% and sensitivity of 96.3% for a combination of 10 ng of cfDNA input, 0.008% allele frequency, 50 variants on the patient-specific panels, and a baseline threshold. Limit of detection ranged from 0.008% allele frequency when utilizing 60 ng of cfDNA input with 18-50 variants in the patient-specific panels (> 99.9% sensitivity) with a baseline threshold, to 0.05% allele frequency when using 10 ng of cfDNA input with an 18-variant panel with a monitoring threshold (> 99.9% sensitivity). CONCLUSIONS: The Invitae Personalized Cancer Monitoring assay, featuring a flexible patient-specific panel design with 18-50 variants, demonstrated high sensitivity and specificity for detecting ctDNA at variant allele frequencies as low as 0.008%. This assay may support patient prognostic stratification, provide real-time data on therapy responses, and enable early detection of residual/recurrent disease.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Frequência do Gene , Biomarcadores Tumorais/genética , Mutação
2.
PRiMER ; 6: 2, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481232

RESUMO

Introduction: Evidence-based medicine (EBM) teaching is most successful when integrated with patient care, but finding time for teaching on inpatient rotations is difficult. Obstetrics (OB)-Newborn TEACH (Teaching Evidence-based medicine And Clinical topics in the Hospital) Cards is a curricular tool for efficient teaching sessions on maternity care rotations. We evaluated the impact of OB-Newborn TEACH Cards on resident EBM attitudes and skills, exposure to clinical topics, and patient management. Methods: OB-Newborn TEACH Cards includes 56 cards on obstetrics and newborn topics with background and foreground discussion questions. Residents on a family medicine maternal-child service completed pre- and postrotation surveys to assess the cards' impact on EBM attitudes and skills. Faculty and residents also completed point-of-care surveys to assess the self-reported influence on management decisions. Results: Of 24 potential resident participants, 58% completed pre- and postrotation surveys, which showed significant increase in perceived EBM skills like applying evidence to a clinical scenario (P=.04), but a decrease in reported attitudes that EBM is realistic (P=.028) and useful (P=.025). Residents agreed the cards exposed them to a variety of topics. Point-of-care surveys (n=58) indicated that 57% of the time respondents used a card to learn about a topic not related to a specific patient. When used to learn about specific patients, the cards influenced self-reported patient care 44% of the time. Conclusion: OB-Newborn TEACH Cards are a promising inpatient teaching tool for improving perceived EBM clinical application, exposing residents to maternal-child topics, and influencing patient care decisions.

3.
Proc Natl Acad Sci U S A ; 112(39): 12175-80, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26324907

RESUMO

Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.


Assuntos
Actinobacteria/química , Actinobacteria/genética , Produtos Biológicos/química , Descoberta de Drogas/tendências , Genoma Bacteriano/genética , Genômica/métodos , Ácidos Fosforosos/análise , Sequência de Bases , Descoberta de Drogas/métodos , Biblioteca Gênica , Genômica/tendências , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA