Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765468

RESUMO

Chirality ('handedness') is a property that underlies a broad variety of phenomena in nature. Chiral molecules appear in two forms, and each is a mirror image of the other, the two enantiomers. The chirality of molecules is associated with their optical activity, and circular dichroism is commonly applied to identify the handedness of chiral molecules. Recently, the chiral induced spin selectivity (CISS) effect was established, according to which transfer of electrons within chiral molecules depends on the electron's spin. Which spin is preferred depends on the handedness of the chiral molecule and the direction of motion of the electron. Several experiments in the past indicated that there may be a relation between the optical activity of the molecules and their spin selectivity. Here, we show that for a molecule containing several stereogenic axes, when adsorbed on a metal substrate, the peaks in the CD spectra have the same signs for the two enantiomers. This is not the case when the molecules are adsorbed on a nonmetallic substrate or dissolved in solution. Quantum chemical simulations are able to explain the change in the CD spectra upon adsorption of the molecules on conductive and nonconductive surfaces. Surprisingly, the CISS properties are similar for the two enantiomers when adsorbed on the metal substrate, while when the molecules are adsorbed on nonmetallic surface, the preferred spin depends on the molecule handedness. This correlation between the optical activity and the CISS effect indicates that the CISS effect relates to the global polarizability of the molecule.

2.
Biomacromolecules ; 23(5): 2098-2105, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35289591

RESUMO

Cellulose nanocrystals (CNCs) are composed of chiral cellulose units, which form chiral nematic liquid crystals in water that, upon drying, self-assemble to more complex spiral chiral sheets. This secondary structure arrangement is found to change with an external magnetic or electric field. Here, we show that one of the basic organization driving forces is electron spin, which is produced as the charge redistributes in the organization process of the chiral building blocks. It is important to stress that the electron spin-exchange interactions supply the original driving force and not the magnetic field per se. The results present the first utilization of the chiral-induced spin selectivity (CISS) effect in sugars, enabling one to regulate the CNC bottom-up fabrication process. Control is demonstrated on the organization order of the CNC by utilizing different magnetization directions of the ferromagnetic surface. The produced spin is probed using a simple Hall device. The measured Hall resistance shows that the CNC sheets' arrangement is affected during the first four hours as long as the CNC is in its wet phase. On introducing the 1,2,3,4-butanetetracarboxylic acid cross-linker into the CNC sheet, the packing density of the CNC helical structure is enhanced, presenting an increase in the Hall resistance and the chiral state.


Assuntos
Cristais Líquidos , Nanopartículas , Celulose/química , Cristais Líquidos/química , Nanopartículas/química , Água
3.
Nano Lett ; 21(15): 6496-6503, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34297582

RESUMO

The detection of enantiopurity for small sample quantities is crucial, particularly in the pharmaceutical industry; however, existing methodologies rely on specific chiral recognition elements, or complex optical systems, limiting its utility. A nanoscale chirality sensor, for continuously monitoring molecular chirality using an electric circuit readout, is presented. This device design represents an alternative real-time scalable approach for chiral recognition of small quantity samples (less than 103 adsorbed molecules). The active device component relies on a gold nanofloret hybrid structure, i.e., a high aspect ratio semiconductor-metal hybrid nanosystem in which a SiGe nanowire tip is selectively decorated with a gold metallic cap. The tip mechanically touches a counter electrode to generate a nanojunction, and upon exposure to molecules, a metal-molecule-metal junction is formed. Adsorption of chiral molecules at the gold tip induces chirality in the localized plasmonic resonance at the electrode-tip junction and manifests in an enantiospecific current response.


Assuntos
Nanofios , Ressonância de Plasmônio de Superfície , Eletrônica , Ouro , Estereoisomerismo
4.
J Phys Chem Lett ; 12(23): 5469-5472, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34085834

RESUMO

Enantioselective catalytic chiral reactions are important to all aspects of life sciences. Here we present the first utilization of the chiral induced spin selectivity (CISS) effect to form, enantioselectively, sp3 chiral centers in catalytic reactions, starting from achiral reagents. The enantiomeric symmetry is broken by affecting spin-controlled different reaction dynamics toward each of the enantiomers, using magnetic substrates. Two catalytic reactions are used for this purpose: a sulfide to sulfoxide oxidation and a Diels-Alder cycloaddition reaction, both catalyzed by hematite (Fe2O3). The proof of concept was evaluated by circular dichroism measurements and by chiral high-performance liquid chromatography techniques. These results provide direct evidence that the directionality of the electron spin can break enantiomeric symmetry, enabling asymmetric catalysis without using chiral reagents, solvents, or catalysts.

5.
MethodsX ; 7: 100975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670803

RESUMO

Generally speaking, reaction platforms involving ferromagnetic surfaces, with a specific magnetic direction, are limited to the two dimensional regime, due to the nature of the magnetic phenomena. Here we show a method for preparing partially coated ferromagnetic microparticles with a distinct magnetic pole. This simple preparation method was presented previously [ 1 ] to demonstrate an application for enantiomeric separation. In this method article we show;•A simple method to a-symmetrically manipulate particle surfaces.•A generic way to synchronize a bare pole of ferromagnetic microparticles.•A simple and generic enantiomer purification technique.

6.
Phys Chem Chem Phys ; 22(38): 21570-21582, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697241

RESUMO

Essential aspects of the chiral induced spin selectivity (CISS) effect and their implications for spin-controlled chemistry and asymmetric electrochemical reactions are described. The generation of oxygen through electrolysis is discussed as an example in which chirality-based spin-filtering and spin selection rules can be used to improve the reaction's efficiency and selectivity. Next the discussion shifts to illustrate how the spin selectivity of chiral molecules (CISS properties) allows one to use the electron spin as a chiral bias for inducing asymmetric reactions and promoting enantiospecific processes. Two enantioselective electrochemical reactions that have used polarized electron spins as a chiral reagent are described; enantioselective electroreduction to resolve an enantiomer from a racemic mixture and an oxidative electropolymerization to generate a chiral polymer from achiral monomers. A complementary approach that has used spin-polarized, but otherwise achiral, molecular films to enantiospecifically associate with one enantiomer from a racemic mixture is also discussed. Each of these reaction types use magnetized films to generate the spin polarized electrons and the enantiospecificity can be selected by choice of the magnetization direction, North pole versus South pole. Possible paths for future research in this area and its compatibility with existing methods based on chiral electrodes are discussed.

7.
Angew Chem Int Ed Engl ; 59(4): 1653-1658, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31621990

RESUMO

We show that enantioselective reactions can be induced by the electron spin itself and that it is possible to replace a conventional enantiopure chemical reagent by spin-polarized electrons that provide the chiral bias for enantioselective reactions. Three examples of enantioselective chemistry resulting from electron-spin polarization are presented. One demonstrates the enantioselective association of a chiral molecule with an achiral self-assembled monolayer film that is spin-polarized, while the other two show that the chiral bias provided by the electron helicity can drive both reduction and oxidation in enantiospecific electrochemical reactions. In each case, the enantioselectivity does not result from enantiospecific interactions of the molecule with the ferromagnetic electrode but from the polarized spin that crosses the interface between the substrate and the molecule. Furthermore, the direction of the electron-spin polarization defines the handedness of the enantioselectivity. This work demonstrates a new mechanism for realizing enantioselective chemistry.

8.
Small ; 12(12): 1605-14, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26808921

RESUMO

Two configurations of molecularly imprinted bis-aniline-bridged Au nanoparticles (NPs) for the specific binding of the electron acceptor N,N'-dimethyl-4,4'-bipyridinium (MV(2+) ) and for the photosensitizer Zn(II)-protoporphyrin IX (Zn(II)-PP-IX) are assembled on electrodes, and the photoelectrochemical features of the two configurations are discussed. Configuration I includes the MV(2+) -imprinted Au NPs matrix as a base layer, on which the Zn(II)-PP-IX-imprinted Au NPs layer is deposited, while configuration II consists of a bilayer corresponding to the reversed imprinting order. Irradiation of the two electrodes in the presence of a benzoquinone/benzohydroquinone redox probe yields photocurrents of unique features: (i) Whereas configuration I yields an anodic photocurrent, the photocurrent generated by configuration II is cathodic. (ii) The photocurrents obtained upon irradiation of the imprinted electrodes are substantially higher as compared to the nonimprinted surfaces. The high photocurrents generated by the imprinted Au NPs-modified electrodes are attributed to the effective loading of the imprinted matrices with the MV(2+) and Zn(II)-PP-IX units and to the effective charge separation proceeding in the systems. The directional anodic/cathodic photocurrents are rationalized in terms of vectorial electron transfer processes dictated by the imprinting order and by the redox potentials of the photosensitizer/electron acceptor units associated with the imprinted sites in the two configurations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...