Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 109(6): 966-979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594909

RESUMO

The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.


Assuntos
Lesão Pulmonar Aguda , Anticorpos Monoclonais Humanizados , Modelos Animais de Doenças , Receptores de Interleucina-6 , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Bleomicina , Pulmão/metabolismo , Pulmão/efeitos dos fármacos
2.
Front Physiol ; 15: 1345488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444763

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by an exacerbated inflammatory response, severe damage to the alveolar-capillary barrier and a secondary infiltration of protein-rich fluid into the airspaces, ultimately leading to respiratory failure. Resolution of ARDS depends on the ability of the alveolar epithelium to reabsorb lung fluid through active transepithelial ion transport, to control the inflammatory response, and to restore a cohesive and functional epithelium through effective repair processes. Interestingly, several lines of evidence have demonstrated the important role of potassium (K+) channels in the regulation of epithelial repair processes. Furthermore, these channels have previously been shown to be involved in sodium/fluid absorption across alveolar epithelial cells, and we have recently demonstrated the contribution of KvLQT1 channels to the resolution of thiourea-induced pulmonary edema in vivo. The aim of our study was to investigate the role of the KCNQ1 pore-forming subunit of KvLQT1 channels in the outcome of ARDS parameters in a model of acute lung injury (ALI). We used a molecular approach with KvLQT1-KO mice challenged with bleomycin, a well-established ALI model that mimics the key features of the exudative phase of ARDS on day 7. Our data showed that KvLQT1 deletion exacerbated the negative outcome of bleomycin on lung function (resistance, elastance and compliance). An alteration in the profile of infiltrating immune cells was also observed in KvLQT1-KO mice while histological analysis showed less interstitial and/or alveolar inflammatory response induced by bleomycin in KvLQT1-KO mice. Finally, a reduced repair rate of KvLQT1-KO alveolar cells after injury was observed. This work highlights the complex contribution of KvLQT1 in the development and resolution of ARDS parameters in a model of ALI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...