Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 24(7): 1132-1145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103113

RESUMO

During the particularly severe hot summer drought in 2018, widespread premature leaf senescence was observed in several broadleaved tree species in Central Europe, particularly in European beech (Fagus sylvatica L.). For beech, it is yet unknown whether the drought evoked a decline towards tree mortality or whether trees can recover in the longer term. In this study, we monitored crown dieback, tree mortality and secondary drought damage symptoms in 963 initially live beech trees that exhibited either premature or normal leaf senescence in 2018 in three regions in northern Switzerland from 2018 to 2021. We related the observed damage to multiple climate- and stand-related parameters. Cumulative tree mortality continuously increased up to 7.2% and 1.3% in 2021 for trees with premature and normal leaf senescence in 2018, respectively. Mean crown dieback in surviving trees peaked at 29.2% in 2020 and 8.1% in 2019 for trees with premature and normal leaf senescence, respectively. Thereafter, trees showed first signs of recovery. Crown damage was more pronounced and recovery was slower for trees that showed premature leaf senescence in 2018, for trees growing on drier sites, and for larger trees. The presence of bleeding cankers peaked at 24.6% in 2019 and 10.7% in 2020 for trees with premature and normal leaf senescence, respectively. The presence of bark beetle holes peaked at 22.8% and 14.8% in 2021 for trees with premature and normal leaf senescence, respectively. Both secondary damage symptoms occurred more frequently in trees that had higher proportions of crown dieback and/or showed premature senescence in 2018. Our findings demonstrate context-specific differences in beech mortality and recovery reflecting the importance of regional and local climate and soil conditions. Adapting management to increase forest resilience is gaining importance, given the expected further beech decline on dry sites in northern Switzerland.


Assuntos
Fagus , Fagus/fisiologia , Secas , Suíça , Senescência Vegetal , Árvores/fisiologia
2.
Sci Total Environ ; 851(Pt 1): 157926, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985592

RESUMO

Ongoing climate warming is increasing evapotranspiration, a process that reduces plant-available water and aggravates the impact of extreme droughts during the growing season. Such an exceptional hot drought occurred in Central Europe in 2018 and caused widespread defoliation in mid-summer in European beech (Fagus sylvatica L.) forests. Here, we recorded crown damage in 2021 in nine mature even-aged beech-dominated stands in northwestern Switzerland along a crown damage severity gradient (low, medium, high) and analyzed tree-ring widths of 21 mature trees per stand. We aimed at identifying predisposing factors responsible for differences in crown damage across and within stands such as tree growth characteristics (average growth rates and year-to-year variability) and site-level variables (mean canopy height, soil properties). We found that stand-level crown damage severity was strongly related to soil water availability, inferred from tree canopy height and plant available soil water storage capacity (AWC). Trees were shorter in drier stands, had higher year-to-year variability in radial growth, and showed higher growth sensitivity to moisture conditions of previous late summer than trees growing on soils with sufficient AWC, indicating that radial growth in these forests is principally limited by soil water availability. Within-stand variation of post-drought crown damage corresponded to growth rate and tree size (diameter at breast height, DBH), i.e., smaller and slower-growing trees that face more competition, were associated with increased crown damage after the 2018 drought. These findings point to tree vigor before the extreme 2018 drought (long-term relative growth rate) as an important driver of damage severity within and across stands. Our results suggest that European beech is less likely to be able to cope with future climate change-induced extreme droughts on shallow soils with limited water retention capacity.


Assuntos
Fagus , Secas , Florestas , Solo , Árvores , Água
3.
Environ Res ; 161: 291-298, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175727

RESUMO

Soil degradation due to erosion is connected to two serious environmental impacts: (i) on-site soil loss and (ii) off-site effects of sediment transfer through the landscape. The potential impact of soil erosion processes on biogeochemical cycles has received increasing attention in the last two decades. Properly designed modelling assumptions on effective soil loss are a key pre-requisite to improve our understanding of the magnitude of nutrients that are mobilized through soil erosion and the resultant effects. The aim of this study is to quantify the potential spatial displacement and transport of soil sediments due to water erosion at European scale. We computed long-term averages of annual soil loss and deposition rates by means of the extensively tested spatially distributed WaTEM/SEDEM model. Our findings indicate that soil loss from Europe in the riverine systems is about 15% of the estimated gross on-site erosion. The estimated sediment yield totals 0.164 ± 0.013Pgyr-1 (which corresponds to 4.62 ± 0.37Mgha-1yr-1 in the erosion area). The greatest amount of gross on-site erosion as well as soil loss to rivers occurs in the agricultural land (93.5%). By contrast, forestland and other semi-natural vegetation areas experience an overall surplus of sediments which is driven by a re-deposition of sediments eroded from agricultural land. Combining the predicted soil loss rates with the European soil organic carbon (SOC) stock, we estimate a SOC displacement by water erosion of 14.5Tg yr-1. The SOC potentially transferred to the riverine system equals to 2.2Tgyr-1 (~15%). Integrated sediment delivery-biogeochemical models need to answer the question on how carbon mineralization during detachment and transport might be balanced or even off-set by carbon sequestration due to dynamic replacement and sediment burial.


Assuntos
Ciclo do Carbono , Solo , Carbono , Sequestro de Carbono , Europa (Continente) , Sedimentos Geológicos
4.
Sci Total Environ ; 616-617: 1077-1088, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29107375

RESUMO

Soils deliver crucial ecosystem services, such as climate regulation through carbon (C) storage and food security, both of which are threatened by climate and land use change. While soils are important stores of terrestrial C, anthropogenic impact on the lateral fluxes of C from land to water remains poorly quantified and not well represented in Earth system models. In this study, we tested a novel framework for tracing and quantifying lateral C fluxes from the terrestrial to the aquatic environment at a catchment scale. The combined use of conservative plant-derived geochemical biomarkers n-alkanes and bulk stable δ13C and δ15N isotopes of soils and sediments allowed us to distinguish between particulate organic C sources from different land uses (i.e. arable and temporary grassland vs. permanent grassland vs. riparian woodland vs. river bed sediments) (p<0.001), showing an enhanced ability to distinguish between land use sources as compared to using just n-alkanes alone. The terrestrial-aquatic proxy (TAR) ratio derived from n-alkane signatures indicated an increased input of terrestrial-derived organic matter (OM) to lake sediments over the past 60years, with an increasing contribution of woody vegetation shown by the C27/C31 ratio. This may be related to agricultural intensification, leading to enhanced soil erosion, but also an increase in riparian woodland that may disconnect OM inputs from arable land uses in the upper parts of the study catchment. Spatial variability of geochemical proxies showed a close coupling between OM provenance and riparian land use, supporting the new conceptualization of river corridors (active river channel and riparian zone) as critical zones linking the terrestrial and aquatic C fluxes. Further testing of this novel tracing technique shows promise in terms of quantification of lateral C fluxes as well as targeting of effective land management measures to reduce soil erosion and promote OM conservation in river catchments.

5.
Environ Res ; 160: 195-202, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987730

RESUMO

The expected growing population and challenges associated with globalisation will increase local food and feed demands and enhance the pressure on local and regional upland soil resources. In light of these potential future developments it is necessary to define sustainable land use and tolerable soil loss rates with methods applicable and adapted to mountainous areas. Fallout-radionuclides (FRNs) are proven techniques to increase our knowledge about the status and resilience of agro-ecosystems. However, the use of the Caesium-137 (137Cs) method is complicated in the European Alps due to its heterogeneous input and the timing of the Chernobyl fallout, which occurred during a few single rain events on partly snow covered ground. Other radioisotopic techniques have been proposed to overcome these limitations. The objective of this study is to evaluate the suitability of excess Lead-210 (210Pbex) and Plutonium-239+240 (239+240Pu) as soil erosion tracers for three different grassland management types at the steep slopes (slope angles between 35 and 38°) located in the Central Swiss Alps. All three FRNs identified pastures as having the highest mean (± standard deviation) net soil loss of -6.7 ± 1.1, -9.8 ± 6.8 and -7.0 ± 5.2 Mg ha-1 yr-1 for 137Cs, 210Pbex and 239+240Pu, respectively. A mean soil loss of -5.7 ± 1.5, -5.2 ± 1.5 and-5.6 ± 2.1 was assessed for hayfields and the lowest rates were established for pastures with dwarf-shrubs (-5.2 ± 2.5, -4.5 ± 2.5 and -3.3 ± 2.4 Mg ha-1 yr-1 for 137Cs, 210Pbex and 239+240Pu, respectively). These rates, evaluated at sites with an elevated soil erosion risk exceed the respective soil production rates. Among the three FRN methods used, 239+240Pu appears as the most promising tracer in terms of measurement uncertainty and reduced small scale variability (CV of 13%). Despite a higher level of uncertainty, 210Pbex produced comparable results, with a wide range of erosion rates sensitive to changes in grassland management. 210Pbex can then be as well considered as a suitable soil tracer to investigate alpine agroecosystems.


Assuntos
Pradaria , Radioisótopos de Chumbo , Plutônio , Solo
6.
J Environ Radioact ; 101(5): 369-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20307920

RESUMO

Establishment of (137)Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of (137)Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of (137)Cs gamma soil radiation has been done in an alpine catchment with high (137)Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in (137)Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of (137)Cs within the field of view (3.1 m(2)) of each measurement. There was no dependency of (137)Cs on pH, clay content and carbon content, but a close relationship was determined between measured (137)Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R(2) = 0.86, p < 0.0001) was found for (137)Cs activities (in Bq kg(-1)) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated (137)Cs activities originating from Chernobyl fallout.


Assuntos
Radioisótopos de Césio/análise , Ecossistema , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...