Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(9): e1011294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695773

RESUMO

Plant pathogens secrete proteins called effectors that target host cellular processes to promote disease. Recently, structural genomics has identified several families of fungal effectors that share a similar three-dimensional structure despite remarkably variable amino-acid sequences and surface properties. To explore the selective forces that underlie the sequence variability of structurally-analogous effectors, we focused on MAX effectors, a structural family of effectors that are major determinants of virulence in the rice blast fungus Pyricularia oryzae. Using structure-informed gene annotation, we identified 58 to 78 MAX effector genes per genome in a set of 120 isolates representing seven host-associated lineages. The expression of MAX effector genes was primarily restricted to the early biotrophic phase of infection and strongly influenced by the host plant. Pangenome analyses of MAX effectors demonstrated extensive presence/absence polymorphism and identified gene loss events possibly involved in host range adaptation. However, gene knock-in experiments did not reveal a strong effect on virulence phenotypes suggesting that other evolutionary mechanisms are the main drivers of MAX effector losses. MAX effectors displayed high levels of standing variation and high rates of non-synonymous substitutions, pointing to widespread positive selection shaping the molecular diversity of MAX effectors. The combination of these analyses with structural data revealed that positive selection acts mostly on residues located in particular structural elements and at specific positions. By providing a comprehensive catalog of amino acid polymorphism, and by identifying the structural determinants of the sequence diversity, our work will inform future studies aimed at elucidating the function and mode of action of MAX effectors.


Assuntos
Aminoácidos , Ascomicetos , Virulência/genética , Sequência de Aminoácidos , Ascomicetos/genética
2.
Plant J ; 115(5): 1345-1356, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248636

RESUMO

Receptor-like cytoplasmic kinases (RLCKs) mediate the intracellular signaling downstream of pattern-recognition receptors (PRRs). Several RLCKs from subfamily VII of rice (Oryza sativa) have important roles in plant immunity, but the role of RLCK VII-4 in pattern-triggered immune (PTI) signaling and resistance to pathogens has not yet been investigated. Here, we generated by multiplex clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated genome editing rice sextuple mutant lines where the entire RLCK VII-4 subfamily is inactivated and then analyzed the resulting lines for their response to chitin and flg22 and for their immunity to Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae. Analysis of the rlckvii-4 mutants revealed that they have an impaired reactive oxygen system burst and reduced defense gene expression in response to flg22 and chitin. This indicates that members of the rice RLCK VII-4 subfamily are required for immune signaling downstream of multiple PRRs. Furthermore, we found that the rice RLCK VII-4 subfamily is important for chitin-induced callose deposition and mitogen-activated protein kinase activation and that it is crucial for basal resistance against Xoo and M. oryzae pathogens. This establishes that the RLCK VII-4 subfamily has critical functions in the regulation of multiple PTI pathways in rice and opens the way for deciphering the precise role of its members in the control of rice PTI.


Assuntos
Oryza , Xanthomonas , Oryza/metabolismo , Reconhecimento da Imunidade Inata , Imunidade Vegetal/genética , Transdução de Sinais , Xanthomonas/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Quitina/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
3.
Mol Ecol ; 32(10): 2519-2533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932815

RESUMO

Traditional agrosystems, where humans, crops and microbes have coevolved over long periods, can serve as models to understand the ecoevolutionary determinants of disease dynamics and help the engineering of durably resistant agrosystems. Here, we investigated the genetic and phenotypic relationship between rice (Oryza sativa) landraces and their rice blast pathogen (Pyricularia oryzae) in the traditional Yuanyang terraces of flooded rice paddies in China, where rice landraces have been grown and bred over centuries without significant disease outbreaks. Analyses of genetic subdivision revealed that indica rice plants clustered according to landrace names. Three new diverse lineages of rice blast specific to the Yuanyang terraces coexisted with lineages previously detected at the worldwide scale. Population subdivision in the pathogen population did not mirror pattern of population subdivision in the host. Measuring the pathogenicity of rice blast isolates on landraces revealed generalist life history traits. Our results suggest that the implementation of disease control strategies based on the emergence or maintenance of a generalist lifestyle in pathogens may sustainably reduce the burden of disease in crops.


Assuntos
Variação Genética , Oryza , Humanos , Oryza/genética , Melhoramento Vegetal , Produtos Agrícolas , China , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
4.
Proc Natl Acad Sci U S A ; 115(45): 11637-11642, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30355769

RESUMO

The structurally conserved but sequence-unrelated MAX (Magnaporthe oryzae avirulence and ToxB-like) effectors AVR1-CO39 and AVR-PikD from the blast fungus M. oryzae are recognized by the rice nucleotide-binding domain and leucine-rich repeat proteins (NLRs) RGA5 and Pikp-1, respectively. This involves, in both cases, direct interaction of the effector with a heavy metal-associated (HMA) integrated domain (ID) in the NLR. Here, we solved the crystal structures of a C-terminal fragment of RGA5 carrying the HMA ID (RGA5_S), alone, and in complex with AVR1-CO39 and compared it to the structure of the Pikp1HMA/AVR-PikD complex. In both complexes, HMA ID/MAX effector interactions involve antiparallel alignment of ß-sheets from each partner. However, effector-binding occurs at different surfaces in Pikp1HMA and RGA5HMA, indicating that these interactions evolved independently by convergence of these two MAX effectors to the same type of plant target proteins. Interestingly, the effector-binding surface in RGA5HMA overlaps with the surface that mediates RGA5HMA self-interaction. Mutations in the HMA-binding interface of AVR1-CO39 perturb RGA5HMA-binding, in vitro and in vivo, and affect the recognition of M. oryzae in a rice cultivar containing Pi-CO39 Our study provides detailed insight into the mechanisms of effector recognition by NLRs, which has substantial implications for future engineering of NLRs to expand their recognition specificities. In addition, we propose, as a hypothesis for the understanding of effector diversity, that in the structurally conserved MAX effectors the molecular mechanism of host target protein-binding is conserved rather than the host target proteins themselves.


Assuntos
Proteínas Fúngicas/química , Magnaporthe/genética , Proteínas NLR/química , Oryza/imunologia , Proteínas de Plantas/química , Fatores de Virulência/química , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Magnaporthe/patogenicidade , Modelos Moleculares , Proteínas NLR/genética , Proteínas NLR/imunologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Elife ; 52016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008850

RESUMO

Understanding how fungi specialize on their plant host is crucial for developing sustainable disease control. A traditional, centuries-old rice agro-system of the Yuanyang terraces was used as a model to show that virulence effectors of the rice blast fungus Magnaporthe oryzaeh play a key role in its specialization on locally grown indica or japonica local rice subspecies. Our results have indicated that major differences in several components of basal immunity and effector-triggered immunity of the japonica and indica rice varieties are associated with specialization of M. oryzae. These differences thus play a key role in determining M. oryzae host specificity and may limit the spread of the pathogen within the Yuanyang agro-system. Specifically, the AVR-Pia effector has been identified as a possible determinant of the specialization of M. oryzae to local japonica rice.


Assuntos
Especificidade de Hospedeiro , Magnaporthe/patogenicidade , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Fatores de Virulência/metabolismo , Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia
6.
Anim Genet ; 45(3): 412-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24628286

RESUMO

The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution.


Assuntos
Repetições de Microssatélites , Salmão/genética , Animais , Marcadores Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
7.
Bull Entomol Res ; 103(3): 354-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23448201

RESUMO

Epitrix species (Coleoptera: Chrysomelidae) feed mostly on plants from the family Solanaceae and some of them are major pests of potato crops. All Epitrix species are morphologically highly similar, which makes them difficult to identify and limits their study and management. Identification of species is mostly based on the observation of the genitalia and requires a high level of expertise. Here, we propose a tool to reliably identify all developmental stages of the most economically important Epitrix species feeding on potato in Europe and North America (Epitrix cucumeris, Epitrix similaris, Epitrix tuberis, Epitrix subcrinita and Epitrix hirtipennis). We first sequenced two DNA markers (mitochondrial cytochrome c oxidase I (COI) and nuclear internal transcribed spacer 2 (ITS2)) to test their effectiveness in differentiating among six Epitrix species (126 specimens). Morphospecies of Epitrix were well-differentiated by both DNA barcodes and no mitochondrial introgression was detected. Then, we developed an RFLP-based diagnostic method and showed that unambiguous species discrimination can be achieved by using the sole restriction enzyme TaqI on COI polymerase chain reaction products. The tool proposed here should improve our knowledge about Epitrix species biology, distribution and host range, three capacities that are particularly important in the detection and management of these pest species. Specifically, this tool should help prevent the introduction of E. tuberis and E. subcrinita in Europe and limit the spread of the recently introduced E. cucumeris and E. similaris, with minimal disruption to Solanaceae trade.


Assuntos
Besouros/genética , Marcadores Genéticos/genética , Solanum tuberosum/parasitologia , Animais , Sequência de Bases , Código de Barras de DNA Taxonômico/métodos , DNA Intergênico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Controle de Insetos/métodos , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Filogenia , Polimorfismo de Fragmento de Restrição/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
8.
BMC Genomics ; 9: 214, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18474098

RESUMO

BACKGROUND: The goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome c oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed). RESULTS: We used a bioinformatics analysis using all CO1 barcode sequences from GenBank and calculated the probability of having species-specific barcodes for varied size fragments. This analysis established the potential of much smaller fragments, mini-barcodes, for identifying unknown specimens. We then developed a universal primer set for the amplification of mini-barcodes. We further successfully tested the utility of this primer set on a comprehensive set of taxa from all major eukaryotic groups as well as archival specimens. CONCLUSION: In this study we address the important issue of minimum amount of sequence information required for identifying species in DNA barcoding. We establish a novel approach based on a much shorter barcode sequence and demonstrate its effectiveness in archival specimens. This approach will significantly broaden the application of DNA barcoding in biodiversity studies.


Assuntos
Biodiversidade , DNA/genética , Animais , Sequência de Bases , Biologia Computacional , Primers do DNA/genética , Bases de Dados de Ácidos Nucleicos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Células Eucarióticas , Biblioteca Gênica , Genômica/métodos , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...