Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859782

RESUMO

Despite the small number of gustatory sense neurons, Drosophila larvae are able to sense a wide range of chemicals. Although evidence for taste multimodality has been provided in single neurons, an overview of gustatory responses at the periphery is missing and hereby we explore whole-organ calcium imaging of the external taste center. We find that neurons can be activated by different combinations of taste modalities, including opposite hedonic valence and identify distinct temporal dynamics of response. Although sweet sensing has not been fully characterized so far in the external larval gustatory organ, we recorded responses elicited by sugar. Previous findings established that larval sugar sensing relies on the Gr43a pharyngeal receptor, but the question remains if external neurons contribute to this taste. Here, we postulate that external and internal gustation use distinct and complementary mechanisms in sugar sensing and we identify external sucrose sensing neurons.


Assuntos
Drosophila melanogaster/fisiologia , Açúcares/metabolismo , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Sacarose/metabolismo
2.
Biol Open ; 9(6)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32554483

RESUMO

Members of the CAP/SCP/TAPS superfamily have been implicated in many different physiological processes, including pathogen defense, sperm maturation and fertilization. The mode of action of this class of proteins, however, remains poorly understood. The genome of Saccharomyces cerevisiae encodes three CAP superfamily members, Pry1-3. We have previously shown that Pry1 function is required for the secretion of sterols and fatty acids. Here, we analyze the function of Pry3, a GPI-anchored cell wall protein. Overexpression of Pry3 results in strong reduction of mating efficiency, providing for a cell-based readout for CAP protein function. Mating inhibition is a conserved function of the CAP domain and depends on highly conserved surface exposed residues that form part of a putative catalytic metal-ion binding site. Pry3 displays polarized cell surface localization adjacent to bud scars, but is absent from mating projections. When overexpressed, however, the protein leaks onto mating projections, suggesting that mating inhibition is due to mislocalization of the protein. Trapping of the CAP domain within the cell wall through a GPI-anchored nanobody results in a dose-dependent inhibition of mating, suggesting that a membrane proximal CAP domain inhibits a key step in the mating reaction, which is possibly related to the function of CAP domain proteins in mammalian fertilization.This article has an associated First Person interview with the first author of the paper.


Assuntos
Sequência Conservada , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Parede Celular/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química
3.
Cell Rep ; 27(11): 3152-3166.e7, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189102

RESUMO

After a peripheral nerve lesion, distal ends of injured axons disintegrate into small fragments that are subsequently cleared by Schwann cells and later by macrophages. Axonal debris clearing is an early step of the repair process that facilitates regeneration. We show here that Schwann cells promote distal cut axon disintegration for timely clearing. By combining cell-based and in vivo models of nerve lesion with mouse genetics, we show that this mechanism is induced by distal cut axons, which signal to Schwann cells through PlGF mediating the activation and upregulation of VEGFR1 in Schwann cells. In turn, VEGFR1 activates Pak1, leading to the formation of constricting actomyosin spheres along unfragmented distal cut axons to mediate their disintegration. Interestingly, oligodendrocytes can acquire a similar behavior as Schwann cells by enforced expression of VEGFR1. These results thus identify controllable molecular cues of a neuron-glia crosstalk essential for timely clearing of damaged axons.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Fator de Crescimento Placentário/genética , Fator de Crescimento Placentário/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
4.
Front Plant Sci ; 10: 666, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231402

RESUMO

Arbuscular mycorrhiza (AM) is a symbiosis between plants and AM fungi that requires the intracellular accommodation of the fungal partner in the host. For reciprocal nutrient exchange, AM fungi form intracellular arbuscules that are surrounded by the peri-arbuscular membrane. This membrane, together with the fungal plasma membrane, and the space in between, constitute the symbiotic interface, over which nutrients are exchanged. Intracellular establishment of AM fungi requires the VAPYRIN protein which is induced in colonized cells, and which localizes to numerous small mobile structures of unknown identity (Vapyrin-bodies). In order to characterize the identity and function of the Vapyrin-bodies we pursued a dual strategy. First, we co-expressed fluorescently tagged VAPYRIN with a range of subcellular marker proteins, and secondly, we employed biochemical tools to identify interacting partner proteins of VAPYRIN. As an important tool for the quantitative analysis of confocal microscopic data sets from co-expression of fluorescent proteins, we developed a semi-automated image analysis pipeline that allows for precise spatio-temporal quantification of protein co-localization and of the dynamics of organelle association from movies. Taken together, these experiments revealed that Vapyrin-bodies have an endosomal identity with trans-Golgi features, and that VAPYRIN interacts with a symbiotic R-SNARE of the VAMP721 family, that localizes to the same compartment.

5.
Methods Mol Biol ; 1683: 149-164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29082492

RESUMO

In the past decade, automated microscopy has become an important tool for the drug discovery and development process. The establishment of imaging modalities as screening tools depended on technological breakthroughs in the domain of automated microscopy and automated image analysis. These types of assays are often referred to as high content screening or high content analysis (HCS/HCA). The driving force to adopt imaging for drug development is the quantity and quality of cellular information that can be collected and the enhanced physiological relevance of cellular screening compared to biochemical screening. Most imaging in drug development is performed on fixed cells as this allows uncoupling the preparation of the cells from the acquisition of the images. Live-cell imaging is technically challenging, but is very useful for many aspects of the drug development pipeline such as kinetic studies of compound mode of action or to analyze the motion of cellular components. Most vendors of HCS microscopy systems offer the option of environmental chambers and onboard pipetting on their platforms. This reflects the wish and desire of many customers to have the ability to perform live-cell assays on their HCS automated microscopes. This book chapter summarizes the challenges and advantages of live-cell imaging in drug discovery. Examples of applications are presented and the motivation to perform these assays in kinetic mode is discussed.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Animais , Técnicas de Cultura de Células , Células Cultivadas , Descoberta de Drogas/métodos , Humanos , Processamento de Imagem Assistida por Computador , Microscopia , Imagem Molecular/métodos , Software
6.
Biol Open ; 6(2): 296-304, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011628

RESUMO

Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.

7.
J Biomol Screen ; 20(6): 720-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25838434

RESUMO

High-content screening of compound libraries poses various challenges in the early steps in drug discovery such as gaining insights into the mode of action of the selected compounds. Here, we addressed these challenges by integrating two biological screens through bioinformatics and computational analysis. We screened a small-molecule library enriched in amphiphilic compounds in a degranulation assay in rat basophilic leukemia 2H3 (RBL-2H3) cells. The same library was rescreened in a high-content image-based endocytosis assay in HeLa cells. This assay was previously applied to a genome-wide RNAi screen that produced quantitative multiparametric phenotypic profiles for genes that directly or indirectly affect endocytosis. By correlating the endocytic profiles of the compounds with the genome-wide siRNA profiles, we identified candidate pathways that may be inhibited by the compounds. Among these, we focused on the Akt pathway and validated its inhibition in HeLa and RBL-2H3 cells. We further showed that the compounds inhibited the translocation of the Akt-PH domain to the plasma membrane. The approach performed here can be used to integrate chemical and functional genomics screens for investigating the mechanism of action of compounds.


Assuntos
Degranulação Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Animais , Linhagem Celular , Endocitose/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Fosfoproteínas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Bibliotecas de Moléculas Pequenas
8.
J Cell Sci ; 127(Pt 23): 5079-92, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25278553

RESUMO

The delivery of newly synthesized soluble lysosomal hydrolases to the endosomal system is essential for lysosome function and cell homeostasis. This process relies on the proper trafficking of the mannose 6-phosphate receptors (MPRs) between the trans-Golgi network (TGN), endosomes and the plasma membrane. Many transmembrane proteins regulating diverse biological processes ranging from virus production to the development of multicellular organisms also use these pathways. To explore how cell signaling modulates MPR trafficking, we used high-throughput RNA interference (RNAi) to target the human kinome and phosphatome. Using high-content image analysis, we identified 127 kinases and phosphatases belonging to different signaling networks that regulate MPR trafficking and/or the dynamic states of the subcellular compartments encountered by the MPRs. Our analysis maps the MPR trafficking pathways based on enzymes regulating phosphatidylinositol phosphate metabolism. Furthermore, it reveals how cell signaling controls the biogenesis of post-Golgi tubular carriers destined to enter the endosomal system through a SRC-dependent pathway regulating ARF1 and RAC1 signaling and myosin II activity.


Assuntos
Membrana Celular/enzimologia , Endossomos/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interferência de RNA , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/enzimologia , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Análise por Conglomerados , Regulação Enzimológica da Expressão Gênica , Redes Reguladoras de Genes , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Mapas de Interação de Proteínas , Transporte Proteico/genética , Receptor IGF Tipo 2/genética , Transdução de Sinais , Transfecção , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
9.
J Biomol Screen ; 19(7): 1070-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24556389

RESUMO

Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering.


Assuntos
Ensaios de Migração Celular/métodos , Endossomos/metabolismo , Automação , Linhagem Celular Tumoral , Técnicas de Química Combinatória , Proteínas de Fluorescência Verde/química , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Movimento , Análise Multivariada , Nocodazol/química , Fenótipo , Análise de Componente Principal , Interferência de RNA , Reprodutibilidade dos Testes
10.
Methods Mol Biol ; 986: 105-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23436409

RESUMO

High content screening (HCS) has established itself in the world of the pharmaceutical industry as an essential tool for drug discovery and drug development. HCS is currently starting to enter the academic world and might become a widely used technology. Given the diversity of problems tackled in academic research, HCS could experience some profound changes in the future, mainly with more imaging modalities and smart microscopes being developed. One of the limitations in the establishment of HCS in academia is flexibility and cost. Flexibility is important to be able to adapt the HCS setup to accommodate the multiple different assays typical of academia. Many cost factors cannot be avoided, but the costs of the software packages necessary to analyze large datasets can be reduced by using Open Source software. We present and discuss the Open Source software CellProfiler for image analysis and KNIME for data analysis and data mining that provide software solutions which increase flexibility and keep costs low.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador/métodos , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Software
11.
Cell Host Microbe ; 13(2): 129-42, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23414754

RESUMO

Pharmacological modulators of host-microbial interactions can in principle be identified using high-content screens. However, a severe limitation of this approach is the lack of insights into the mode of action of compounds selected during the primary screen. To overcome this problem, we developed a combined experimental and computational approach. We designed a quantitative multiparametric image-based assay to measure intracellular mycobacteria in primary human macrophages, screened a chemical library containing FDA-approved drugs, and validated three compounds for intracellular killing of M. tuberculosis. By integrating the multiparametric profiles of the chemicals with those of siRNAs from a genome-wide survey on endocytosis, we predicted and experimentally verified that two compounds modulate autophagy, whereas the third accelerates endosomal progression. Our findings demonstrate the value of integrating small molecules and genetic screens for identifying cellular mechanisms modulated by chemicals. Furthermore, selective pharmacological modulation of host trafficking pathways can be applied to intracellular pathogens beyond mycobacteria.


Assuntos
Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Interferência de RNA , Antibacterianos/química , Transporte Biológico , Contagem de Colônia Microbiana , Biologia Computacional/métodos , Endocitose , Endossomos , Proteínas de Fluorescência Verde/metabolismo , Haloperidol/química , Haloperidol/farmacologia , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Nortriptilina/química , Nortriptilina/farmacologia , Fagossomos , Proclorperazina/química , Proclorperazina/farmacologia
12.
PLoS One ; 7(4): e35063, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529973

RESUMO

Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of a variety of commonly used growth conditions on the yeast lipidome, including glycerophospholipids, triglycerides, ergosterol as well as complex sphingolipids. This extensive dataset allowed for a quantitative description of the intrinsic flexibility of a eukaryotic lipidome, thereby providing new insights into the adjustments of lipid biosynthetic pathways. In addition, we established a baseline for future lipidomic experiments in yeast. Finally, flexibility of lipidomic features is proposed as a new parameter for the description of the physiological state of an organism.


Assuntos
Metabolismo dos Lipídeos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Análise por Conglomerados , Lipídeos/classificação , Espectrometria de Massas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Temperatura
13.
Comb Chem High Throughput Screen ; 12(9): 899-907, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19531001

RESUMO

The field of High Content Screening (HCS) has evolved from a technology used exclusively by the pharmaceutical industry for secondary drug screening, to a technology used for primary drug screening and basic research in academia. The size and the complexity of the screens have been steadily increasing. This is reflected in the fact that the major challenges facing the field at the present are data mining and data storage due to the large amount of data generated during HCS. On the one hand, technological progress of fully automated image acquisition platforms, and on the other hand advances in the field of automated image analysis have made this technology more powerful and more accessible to less specialized users. Image analysis solutions for many biological problems exist and more are being developed to increase both the quality and the quantity of data extracted from the images acquired during the screens. We highlight in this review some of the major challenges facing automatic high throughput image analysis and present some of the software solutions available on the market or from academic open source solutions.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Animais , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Cinética , Software , Soluções
14.
Artigo em Inglês | MEDLINE | ID: mdl-18003446

RESUMO

The micro array are an experimental technique for parallel determination of molecular concentration. The image analysis is an important, time consuming and error prone step of the process. We describe here an automatic procedure able to analyze the micro array data and to accurately provide the level of concentration for each microRNA (miRNA). The proposed method has the advantage, compared to commercial products, to minimize the user interaction, leading to a more reproducible data analysis.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , MicroRNAs/análise , MicroRNAs/genética , Análise em Microsséries/métodos , Microscopia de Fluorescência/métodos , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...