Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6073, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025857

RESUMO

Pathogenic bacteria secrete protein effectors to hijack host machinery and remodel their infectious niche. Rickettsia spp. are obligate intracellular bacteria that can cause life-threatening disease, but their absolute dependence on the host cell has impeded discovery of rickettsial effectors and their host targets. We implemented bioorthogonal non-canonical amino acid tagging (BONCAT) during R. parkeri infection to selectively label, isolate, and identify effectors delivered into the host cell. As the first use of BONCAT in an obligate intracellular bacterium, our screen more than doubles the number of experimentally validated effectors for the genus. The seven novel secreted rickettsial factors (Srfs) we identified include Rickettsia-specific proteins of unknown function that localize to the host cytoplasm, mitochondria, and ER. We further show that one such effector, SrfD, interacts with the host Sec61 translocon. Altogether, our work uncovers a diverse set of previously uncharacterized rickettsial effectors and lays the foundation for a deeper exploration of the host-pathogen interface.


Assuntos
Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Proteômica , Rickettsia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteômica/métodos , Rickettsia/metabolismo , Rickettsia/genética , Humanos , Animais , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/genética , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/metabolismo , Chlorocebus aethiops , Células Vero , Células HeLa , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo
2.
Sci Adv ; 10(24): eado2783, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875327

RESUMO

A core vulnerability in symbioses is the need for coordination between the symbiotic partners, which are often assumed to be closely physiologically integrated. We critically re-examine this assumed integration between symbionts in lichen symbioses, recovering a long overlooked yet fundamental physiological asymmetry in carbon balance. We examine the physiological, ecological, and transcriptional basis of this asymmetry in the lichen Evernia mesomorpha. This carbon balance asymmetry depends on hydration source and aligns with climatic range limits. Differences in gene expression across the E. mesomorpha symbiosis suggest that the physiologies of the primary lichen symbionts are decoupled. Furthermore, we use gas exchange data to show that asymmetries in carbon balance are widespread and common across evolutionarily disparate lichen associations. Using carbon balance asymmetry as an example, we provide evidence for the wide-ranging importance of physiological asymmetries in symbioses.


Assuntos
Líquens , Simbiose , Líquens/fisiologia , Líquens/metabolismo , Carbono/metabolismo , Ecossistema
3.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014272

RESUMO

Pathogenic bacteria secrete protein effectors to hijack host machinery and remodel their infectious niche. Rickettsia spp. are obligate intracellular bacteria that can cause life-threatening disease, but their absolute dependence on the host cell environment has impeded discovery of rickettsial effectors and their host targets. We implemented bioorthogonal non-canonical amino acid tagging (BONCAT) during R. parkeri infection to selectively label, isolate, and identify secreted effectors. As the first use of BONCAT in an obligate intracellular bacterium, our screen more than doubles the number of experimentally validated effectors for R. parkeri. The novel secreted rickettsial factors (Srfs) we identified include Rickettsia-specific proteins of unknown function that localize to the host cytoplasm, mitochondria, and ER. We further show that one such effector, SrfD, interacts with the host Sec61 translocon. Altogether, our work uncovers a diverse set of previously uncharacterized rickettsial effectors and lays the foundation for a deeper exploration of the host-pathogen interface.

4.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687159

RESUMO

The use of protease inhibitors in human immunodeficiency virus type 1 (HIV-1) treatment is limited by adverse effects, including metabolic complications. To address these challenges, efforts are underway in the pursuit of more potent and less toxic HIV-1 protease inhibitors. Repurposing existing drugs offers a promising avenue to expedite the drug discovery process, saving both time and costs compared to conventional de novo drug development. This study screened FDA-approved and investigational drugs in the DrugBank database for their potential as HIV-1 protease inhibitors. Molecular docking studies and cell-based assays, including anti-HIV-1 in vitro assays and XTT cell viability tests, were conducted to evaluate their efficacy. The study findings revealed that CBR003PS, an antibiotic currently in clinical use, and CBR013PS, an investigational drug for treating endometriosis and uterine fibroids, exhibited significant binding affinity to the HIV-1 protease with high stability. Their EC50 values, measured at 100% cell viability, were 9.4 nM and 36.6 nM, respectively. Furthermore, cell-based assays demonstrated that these two compounds showed promising results, with therapeutic indexes higher than 32. In summary, based on their favorable therapeutic indexes, CBR003PS and CBR013PS show potential for repurposing as HIV-1 protease inhibitors.


Assuntos
HIV-1 , Inibidores de Proteases , Feminino , Humanos , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular , Terapia Enzimática , Antibacterianos , Drogas em Investigação
5.
Am J Bot ; 110(2): e16114, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462151

RESUMO

PREMISE: The long-term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered "extremophiles," lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole-ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed. METHODS: We examined the causes of this warming-induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants. RESULTS: Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts ("bleaching") and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water-holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within-thallus photobiont communities shifted in composition toward greater diversity. CONCLUSIONS: The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.


Assuntos
Líquens , Líquens/metabolismo , Ecossistema , Carbono/metabolismo , Simbiose , Plantas
6.
Colloids Surf B Biointerfaces ; 160: 169-176, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28926767

RESUMO

Bacteriophages find applications in agriculture, medicine, and food safety. Many of these applications can expose bacteriophages to stresses that inactivate them including acidic and basic pH. Bacteriophages can be stabilized against these stresses by materials including paper, a common material in packaging and consumer products. Combining paper and bacteriophages creates antibacterial materials, which can reduce the use of antibiotics. Here we show that adsorption on paper protects T4, T5, and T7 bacteriophage from acidic and basic pH. We added bacteriophages to filter paper functionalized with carboxylic acid (carboxyl methyl cellulose) or amine (chitosan) groups, and exposed them to pH from 5.6 to 14. We determined the number of infective bacteriophages after exposure directly on the paper. All papers extended the lifetime of infective bacteriophage by at least a factor of four with some papers stabilizing bacteriophages for up to one week. The degree of stabilization depended on five main factors (i) the family of the bacteriophage, (ii) the charge of the paper and bacteriophages, (iii) the location of the bacteriophages within the paper, (iv) the ability of the paper to prevent bacteriophage-bacteriophage aggregation, and (v) the sensitivity of the bacteriophage proteins to the tested pH. Even when adsorbed on paper the bacteriophages were able to remove E. coli in milk. Choosing the right paper modification or material will protect bacteriophages adsorbed on that material against detrimental pH and other environmental challenges increasing the range of applications of bacteriophages on materials.


Assuntos
Ácidos/química , Álcalis/química , Bacteriófago T4/química , Papel , Adsorção , Antibacterianos/farmacologia , Bacteriófago T4/fisiologia , Bacteriófagos/química , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Ácidos Carboxílicos/química , Quitosana/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Filtração/instrumentação , Contaminação de Alimentos/prevenção & controle , Concentração de Íons de Hidrogênio , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA