Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 79: 102478, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653035

RESUMO

Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.

2.
Small ; 20(2): e2303444, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705132

RESUMO

In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase. To stabilize the colloidal suprastructure, on-chip gelation is introduced by adding natural polyphenol tannic acid (TA) in the water phase. TA forms interparticle linking between the poly(N-vinylcaprolactam) (PVCL) microgels by supramolecular interactions. The combination of supramolecular interlinking with the variation of the microgel concentration in microfluidic droplets enables on-chip fabrication of defined colloidal suprastructures with morphologies ranging from colloidosomes to colloidal supraballs. The obtained supracolloidal structures exhibit a pH-responsive behavior with a disintegration at alkaline conditions within a scale of seconds. The destabilization process results from the deprotonation of phenolic groups and destruction of hydrogen bonds with PVCL chains at higher pH.

3.
Cell Surf ; 10: 100116, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38044953

RESUMO

The mycomembrane (MM) is a mycolic acid layer covering the surface of Mycobacteria and related species. This group includes important pathogens such as Mycobacterium tuberculosis, Corynebacterium diphtheriae, but also the biotechnologically important strain Corynebacterium glutamicum. Biosynthesis of the MM is an attractive target for antibiotic intervention. The first line anti-tuberculosis drug ethambutol (EMB) and the new drug candidate, benzothiazinone 043 (BTZ) interfere with the synthesis of the arabinogalactan (AG), which is a structural scaffold for covalently attached mycolic acids that form the inner leaflet of the MM. We previously showed that C. glutamicum cells treated with a sublethal concentration of EMB lose the integrity of the MM. In this study we examined the effects of BTZ on the cell envelope. Our work shows that BTZ efficiently blocks the apical growth machinery, however effects in combinatorial treatment with ß-lactam antibiotics are only additive, not synergistic. Transmission electron microscopy (TEM) analysis revealed a distinct middle layer in the septum of control cells considered to be the inner leaflet of the MM covalently attached to the AG. This layer was not detectable in the septa of BTZ or EMB treated cells. In addition, we observed that EMB treated cells have a thicker and less electron dense peptidoglycan (PG). While EMB and BTZ both effectively block elongation growth, BTZ also strongly reduces septal cell wall synthesis, slowing down growth effectively. This renders BTZ treated cells likely more tolerant to antibiotics that act on growing bacteria.

5.
Materials (Basel) ; 16(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241274

RESUMO

In order to enhance the range of processable alloys of laser-based powder bed fusion, reinforced alloys have gained focus. Satelliting is a recently introduced method for adding fine additives to larger parent powder particles using a bonding agent. Satellited particles prevent a local demixing due to size and density effects of the powder. In this study, the satelliting method is used for the additivation of Cr3C2 to AISI H13 tool steel via a functional polymer binder (pectin). The investigation includes a detailed binder analysis and comparison to the previously used PVA binder as well as processability in PBF-LB and the microstructure of the alloy. The results reveal that pectin is a suitable binder for the satelliting process and the demixing behavior that appears when using a simple powder blend can be significantly reduced. However, the alloy is enriched with carbon, which results in austenite being retained. Thus, in future research, a reduced binder content will be investigated.

6.
Biochemistry ; 62(2): 229-240, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35446547

RESUMO

Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.


Assuntos
Halogenação , Ácidos Cetoglutáricos , Animais , Ácidos Cetoglutáricos/metabolismo , Catálise , Compostos Ferrosos , Ácidos Graxos Dessaturases/metabolismo
7.
Genes (Basel) ; 13(2)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35205323

RESUMO

In order to survive, bacterial cells rely on precise spatiotemporal organization and coordination of essential processes such as cell growth, chromosome segregation, and cell division. Given the general lack of organelles, most bacteria are forced to depend on alternative localization mechanisms, such as, for example, geometrical cues. DivIVA proteins are widely distributed in mainly Gram-positive bacteria and were shown to bind the membrane, typically in regions of strong negative curvature, such as the cell poles and division septa. Here, they have been shown to be involved in a multitude of processes: from apical cell growth and chromosome segregation in actinobacteria to sporulation and inhibition of division re-initiation in firmicutes. Structural analyses revealed that DivIVA proteins can form oligomeric assemblies that constitute a scaffold for recruitment of other proteins. However, it remained unclear whether interaction with partner proteins influences DivIVA dynamics. Using structured illumination microscopy (SIM), single-particle tracking (SPT) microscopy, and fluorescent recovery after photobleaching (FRAP) experiments, we show that DivIVA from Corynebacterium glutamicum is mobilized by its binding partner ParB. In contrast, we show that the interaction between Bacillus subtilis DivIVA and its partner protein MinJ reduces DivIVA mobility. Furthermore, we show that the loss of the rod-shape leads to an increase in DivIVA dynamics in both organisms. Taken together, our study reveals the modulation of the polar scaffold protein by protein interactors and cell morphology. We reason that this leads to a very simple, yet robust way for actinobacteria to maintain polar growth and their rod-shape. In B. subtilis, however, the DivIVA protein is tailored towards a more dynamic function that allows quick relocalization from poles to septa upon division.


Assuntos
Proteínas de Bactérias , Proteínas de Ciclo Celular , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Divisão Celular , Segregação de Cromossomos
8.
Elife ; 102021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605403

RESUMO

Regulation of growth and cell size is crucial for the optimization of bacterial cellular function. So far, single bacterial cells have been found to grow predominantly exponentially, which implies the need for tight regulation to maintain cell size homeostasis. Here, we characterize the growth behavior of the apically growing bacterium Corynebacterium glutamicum using a novel broadly applicable inference method for single-cell growth dynamics. Using this approach, we find that C. glutamicum exhibits asymptotically linear single-cell growth. To explain this growth mode, we model elongation as being rate-limited by the apical growth mechanism. Our model accurately reproduces the inferred cell growth dynamics and is validated with elongation measurements on a transglycosylase deficient ΔrodA mutant. Finally, with simulations we show that the distribution of cell lengths is narrower for linear than exponential growth, suggesting that this asymptotically linear growth mode can act as a substitute for tight division length and division symmetry regulation.


Assuntos
Ciclo Celular , Corynebacterium glutamicum/crescimento & desenvolvimento , Análise de Célula Única
9.
Nat Commun ; 12(1): 3310, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083531

RESUMO

FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanosina Trifosfato/metabolismo , Fenômenos Biomecânicos , Divisão Celular/fisiologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Hidrólise , Lipossomos/metabolismo , Proteínas Luminescentes/metabolismo , Membranas/metabolismo , Modelos Biológicos , Pinças Ópticas , Proteínas Recombinantes de Fusão/metabolismo , Torção Mecânica
10.
Beilstein J Nanotechnol ; 11: 1742-1749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282621

RESUMO

While the application of focused ion beam (FIB) techniques has become a well-established technique in research and development for patterning and prototyping on the nanometer scale, there is still a large underused potential with respect to the usage of ion species other than gallium. Light ions in the range of m = 1-28 u (hydrogen to silicon) are of increasing interest due to the available high beam resolution in the nanometer range and their special chemical and physical behavior in the substrate. In this work, helium and neon ion beams from a helium ion microscope are compared with ion beams such as lithium, beryllium, boron, and silicon, obtained from a mass-separated FIB using a liquid metal alloy ion source (LMAIS) with respect to the imaging and milling resolution, as well as the current stability. Simulations were carried out to investigate whether the experimentally smallest ion-milled trenches are limited by the size of the collision cascade. While He+ offers, experimentally and in simulations, the smallest minimum trench width, light ion species such as Li+ or Be+ from a LMAIS offer higher milling rates and ion currents while outperforming the milling resolution of Ne+ from a gas field ion source. The comparison allows one to select the best possible ion species for the specific demands in terms of resolution, beam current, and volume to be drilled.

11.
Nat Commun ; 11(1): 6067, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247102

RESUMO

Vibrio cholerae, the cause of cholera disease, exhibits a characteristic curved rod morphology, which promotes infectivity and motility in dense hydrogels. Periplasmic protein CrvA determines cell curvature in V. cholerae, yet the regulatory factors controlling CrvA are unknown. Here, we discover the VadR small RNA (sRNA) as a post-transcriptional inhibitor of the crvA mRNA. Mutation of vadR increases cell curvature, whereas overexpression has the inverse effect. We show that vadR transcription is activated by the VxrAB two-component system and triggered by cell-wall-targeting antibiotics. V. cholerae cells failing to repress crvA by VadR display decreased survival upon challenge with penicillin G indicating that cell shape maintenance by the sRNA is critical for antibiotic resistance. VadR also blocks the expression of various key biofilm genes and thereby inhibits biofilm formation in V. cholerae. Thus, VadR is an important regulator for synchronizing peptidoglycan integrity, cell shape, and biofilm formation in V. cholerae.


Assuntos
Resistência Microbiana a Medicamentos/genética , RNA Bacteriano/genética , Vibrio cholerae/citologia , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Vibrio cholerae/fisiologia
12.
Nat Commun ; 11(1): 5403, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106470

RESUMO

Methanol is a biotechnologically promising substitute for food and feed substrates since it can be produced renewably from electricity, water and CO2. Although progress has been made towards establishing Escherichia coli as a platform organism for methanol conversion via the energy efficient ribulose monophosphate (RuMP) cycle, engineering strains that rely solely on methanol as a carbon source remains challenging. Here, we apply flux balance analysis to comprehensively identify methanol-dependent strains with high potential for adaptive laboratory evolution. We further investigate two out of 1200 candidate strains, one with a deletion of fructose-1,6-bisphosphatase (fbp) and another with triosephosphate isomerase (tpiA) deleted. In contrast to previous reported methanol-dependent strains, both feature a complete RuMP cycle and incorporate methanol to a high degree, with up to 31 and 99% fractional incorporation into RuMP cycle metabolites. These strains represent ideal starting points for evolution towards a fully methylotrophic lifestyle.


Assuntos
Escherichia coli/metabolismo , Metanol/metabolismo , Ribulosefosfatos/metabolismo , Proteínas de Bactérias , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Engenharia Metabólica , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
13.
J Nephrol ; 33(4): 817-827, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144645

RESUMO

Patients with end-stage renal disease (ESRD) suffer from a progressively increasing low-grade systemic inflammation, which is associated with higher morbidity and mortality. Regulatory T cells (Tregs) play an important role in regulation of the inflammatory process. Previously, it has been demonstrated that short-chain fatty acids reduce inflammation in the central nervous system in a murine model of multiple sclerosis through an increase in tissue infiltrating Tregs. Here, we evaluated the effect of the short-chain fatty acid propionate on the chronic inflammatory state and T-cell composition in ESRD patients. Analyzing ESRD patients and healthy blood donors before, during, and 60 days after the propionate supplementation by multiparametric flow cytometry we observed a gradual and significant expansion in the frequencies of CD25highCD127- Tregs in both groups. Phenotypic characterization suggests that polarization of naïve T cells towards Tregs is responsible for the observed expansion. In line with this, we observed a significant reduction of inflammatory marker CRP under propionate supplementation. Of interest, the observed anti-inflammatory surroundings did not affect the protective pathogen-specific immunity as demonstrated by the stable frequencies of effector/memory T cells specific for tetanus/diphtheria recall antigens. Collectively, our data suggest that dietary supplements with propionate have a beneficial effect on the elevated systemic inflammation of ESRD patients. The effect can be achieved through an expansion of circulating Tregs without affecting the protective pathogen-reactive immunity.


Assuntos
Falência Renal Crônica , Propionatos , Linfócitos T Reguladores , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Suplementos Nutricionais , Feminino , Citometria de Fluxo , Humanos , Falência Renal Crônica/imunologia , Masculino , Pessoa de Meia-Idade , Propionatos/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Adulto Jovem
14.
Nat Metab ; 2(2): 153-166, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32090198

RESUMO

Cell cycle progression requires the coordination of cell growth, chromosome replication, and division. Consequently, a functional cell cycle must be coupled with metabolism. However, direct measurements of metabolome dynamics remained scarce, in particular in bacteria. Here, we describe an untargeted metabolomics approach with synchronized Caulobacter crescentus cells to monitor the relative abundance changes of ~400 putative metabolites as a function of the cell cycle. While the majority of metabolite pools remains homeostatic, ~14% respond to cell cycle progression. In particular, sulfur metabolism is redirected during the G1-S transition, and glutathione levels periodically change over the cell cycle with a peak in late S phase. A lack of glutathione perturbs cell size by uncoupling cell growth and division through dysregulation of KefB, a K+/H+ antiporter. Overall, we here describe the impact of the C. crescentus cell cycle progression on metabolism, and in turn relate glutathione and potassium homeostasis to timely cell division.


Assuntos
Caulobacter crescentus/metabolismo , Ciclo Celular , Glutationa/metabolismo , Metabolômica , Caulobacter crescentus/citologia , Divisão Celular , Cromatografia Líquida , Homeostase , Espectrometria de Massas , Potássio/metabolismo
15.
Nat Commun ; 9(1): 1508, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666370

RESUMO

Methanol represents an attractive substrate for biotechnological applications. Utilization of reduced one-carbon compounds for growth is currently limited to methylotrophic organisms, and engineering synthetic methylotrophy remains a major challenge. Here we apply an in silico-guided multiple knockout approach to engineer a methanol-essential Escherichia coli strain, which contains the ribulose monophosphate cycle for methanol assimilation. Methanol conversion to biomass was stoichiometrically coupled to the metabolization of gluconate and the designed strain was subjected to laboratory evolution experiments. Evolved strains incorporate up to 24% methanol into core metabolites under a co-consumption regime and utilize methanol at rates comparable to natural methylotrophs. Genome sequencing reveals mutations in genes coding for glutathione-dependent formaldehyde oxidation (frmA), NAD(H) homeostasis/biosynthesis (nadR), phosphopentomutase (deoB), and gluconate metabolism (gntR). This study demonstrates a successful metabolic re-routing linked to a heterologous pathway to achieve methanol-dependent growth and represents a crucial step in generating a fully synthetic methylotrophic organism.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/fisiologia , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Metanol/metabolismo , Proteínas de Bactérias/metabolismo , Simulação por Computador , Técnicas de Inativação de Genes , Genoma Bacteriano/genética , Gluconatos/metabolismo
16.
mBio ; 8(3)2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588128

RESUMO

Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicumIMPORTANCE Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.


Assuntos
Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Corynebacterium glutamicum/genética , Replicação do DNA , Diploide , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Segregação de Cromossomos , Corynebacterium glutamicum/crescimento & desenvolvimento , Origem de Replicação
17.
Nat Microbiol ; 2: 17073, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504670

RESUMO

Coenzymes are vital for cellular metabolism and act on the full spectrum of enzymatic reactions. Intrinsic chemical reactivity, enzyme promiscuity and high flux through their catalytic cycles make coenzymes prone to damage. To counteract such compromising factors and ensure stable levels of functional coenzymes, cells use a complex interplay between de novo synthesis, salvage, repair and degradation. However, the relative contribution of these factors is currently unknown, as is the overall stability of coenzymes in the cell. Here, we use dynamic 13C-labelling experiments to determine the half-life of major coenzymes of Escherichia coli. We find that coenzymes such as pyridoxal 5-phosphate, flavins, nicotinamide adenine dinucleotide (phosphate) and coenzyme A are remarkably stable in vivo and allow biosynthesis close to the minimal necessary rate. In consequence, they are essentially produced to compensate for dilution by growth and passed on over generations of cells. Exceptions are antioxidants, which are short-lived, suggesting an inherent requirement for increased renewal. Although the growth-driven turnover of stable coenzymes is apparently subject to highly efficient end-product homeostasis, we exemplify that coenzyme pools are propagated in excess in relation to actual growth requirements. Additional testing of Bacillus subtilis and Saccharomyces cerevisiae suggests that coenzyme longevity is a conserved feature in biology.


Assuntos
Coenzimas/metabolismo , Escherichia coli/metabolismo , Bacillus subtilis/metabolismo , Isótopos de Carbono/metabolismo , Meia-Vida , Marcação por Isótopo , Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem
18.
mBio ; 8(1)2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28174310

RESUMO

Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). IMPORTANCE: Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation.


Assuntos
Antituberculosos/farmacologia , Parede Celular/efeitos dos fármacos , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/crescimento & desenvolvimento , Etambutol/farmacologia , Mycobacterium phlei/efeitos dos fármacos , Mycobacterium phlei/crescimento & desenvolvimento , Parede Celular/metabolismo
19.
Infect Dis (Lond) ; 49(4): 277-285, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27866446

RESUMO

BACKGROUND: The risk of developing Lyme borreliosis (LB) after the bite of a Borrelia (B.) burgdorferi sensu lato (s.l.) infected tick in Romania is unknown. METHODS: The present prospective study, performed in 2010-2011 in a hospital in Romania, has followed-up clinical and serological outcome of patients that presented with B. burgdorferi positive Ixodes (I.) ricinus bite. A second group of patients, including age, sex and residence-matched individuals bitten by B. burgdorferi negative ticks, was followed-up as a control group. The subjects' outcome was evaluated one year after the tick bite. RESULTS: Forty-three out of 389 ticks detached from patients were positive by hbb Real-Time PCR (RT-PCR) for B. burgdorferi s.l. (mainly B. afzelii, but also B. garinii, B. burgdorferi sensu stricto, B. spielmanii/B. valaisiana and B. lusitaniae). Twenty patients bitten by B. burgdorferi positive ticks and twenty matched control patients returned for the one year follow-up. Two patients from the B. burgdorferi positive group developed clinical manifestations of acute LB (erythema migrans) and 5 patients seroconverted (two from the B. burgdorferi positive group and three from the B. burgdorferi negative group). Borrelia afzelii was identified in ticks collected from persons that developed erythema migrans (EM). Comparing the two groups of patients, no statistical significant differences were found regarding presence of clinical symptoms or seroconversion. CONCLUSIONS: No outcome differences were found between the group of patients bitten by B. burgdorferi positive ticks and the group of patients bitten by B. burgdorferi negative ticks.


Assuntos
Anticorpos Antibacterianos/sangue , Grupo Borrelia Burgdorferi/isolamento & purificação , Mordeduras e Picadas de Insetos/complicações , Ixodes/microbiologia , Doença de Lyme/epidemiologia , Adolescente , Adulto , Idoso , Animais , Grupo Borrelia Burgdorferi/imunologia , Criança , Pré-Escolar , Feminino , Seguimentos , Hospitais , Humanos , Doença de Lyme/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Romênia , Inquéritos e Questionários , Adulto Jovem
20.
Exp Appl Acarol ; 69(1): 49-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26801157

RESUMO

The objective of this study was to evaluate different methods used for detection of Borrelia burgdorferi sensu lato (s.l.) in ticks: immunohistochemistry followed by focus floating microscopy (FFM) and real-time polymerase chain reaction (real-time PCR) targeting the ospA and hbb genes. Additionally, an optimized ospA real-time PCR assay was developed with an integrated internal amplification control (IAC) for the detection of inhibition in the PCR assay and was validated as an improved screening tool for B. burgdorferi. One hundred and thirty-six ticks collected from humans in a hospital from Cluj-Napoca, Romania, were investigated regarding genus, stage of development and sex, and then tested by all three assays. A poor quality of agreement was found between FFM and each of the two real-time PCR assays, as assessed by concordance analysis (Cohen's kappa), whereas the agreement between the two real-time PCR assays was moderate. The present study argues for a low sensitivity of FFM and underlines that discordant results of different assays used for detection of B. burgdorferi in ticks are frequent.


Assuntos
Grupo Borrelia Burgdorferi/isolamento & purificação , Dermacentor/microbiologia , Ixodes/microbiologia , Animais , Grupo Borrelia Burgdorferi/genética , Dermacentor/crescimento & desenvolvimento , Feminino , Humanos , Imuno-Histoquímica , Ixodes/crescimento & desenvolvimento , Ixodidae , Larva/microbiologia , Ninfa/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Romênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...