Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(20): 9119-9128, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38709854

RESUMO

The cleavage of C-S bonds represents a crucial step in fossil fuel refinement to remove organosulfur impurities. Efforts are required to identify alternatives that can replace the energy-intensive hydrodesulfurization process currently in use. In this context, we have developed a series of bis-thiolato-ligated CrIII complexes supported by the L2- ligand (L2- = 2,2'-bipyridine-6,6'-diyl(bis(1,1-diphenylethanethiolate), one of them displaying desulfurization of one thiolate of the ligand under reducing and acidic conditions at ambient temperature and atmospheric pressure. While only 5-coordinated complexes were previously isolated by reaction of L2- with 3d metal MIII ions, both 5- and 6-coordinated mononuclear complexes have been obtained in the case of CrIII, viz., [CrIIILCl], [CrIIILCl2]-, and [CrIIILCl(CH3CN)]. The investigation of the reactivity of [CrIIILCl(CH3CN)] under reducing conditions led to a dinuclear [CrIII2L2(µ-Cl)(µ-OH)] compound and, in the presence of protons, to the mononuclear CrIII complex [CrIII(LN2S)2]+, where LN2S- is the partially desulfurized form of L2-. A desulfurization mechanism has been proposed involving the release of H2S, as evidenced experimentally.

2.
Dalton Trans ; 53(20): 8850-8856, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717191

RESUMO

Oxidation of [(ArBIG-bian)2-Yb2+(dme)] (1) (ArBIG-bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene; dme = 1,2-dimethoxyethane) by 0.5 equivalent of Me2NC(S)S-S(S)CNMe2 in dme at ambient temperature affords a mixture of two products, [(ArBIG-bian)2-Yb3+{SC(S)NMe2}1-(dme)] and [(ArBIG-bian)1-Yb2+{SC(S)NMe2}1-(dme)], which represent two redox-isomers (2a and 2b, respectively). Their ratio in solution depends on the solvent as well as on the temperature. In the solid state, a decrease of temperature (350 → 100 K) caused an electron transfer from the Yb2+ ion to the ArBIG-bian radical-anion in isomer 2b to afford isomer 2a. Accordingly, the ratio of isomers 2a and 2b changes from 1 : 1 (350 K) to 3 : 1 (100 K). In contrast, in the dimer [(dme)(dpp-bian)1-Yb2+(µ-Cl)2Yb3+(dpp-bian)2-(dme)] (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene), which is the sole example of a lanthanide complex that reveals solid-state redox-isomerism (valence tautomerism) reported so far, the electron transfer from the Yb2+ ion to the dpp-bian radical-anion takes place at around 150 K and is completed within a temperature interval of ca. 7 K.

3.
Commun Chem ; 7(1): 107, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724592

RESUMO

Modifications of complexes by attachment of anchor groups are widely used to control molecule-surface interactions. This is of importance for the fabrication of (catalytically active) hybrid systems, viz. of surface immobilized molecular catalysts. In this study, the complex fac-Re(S-Sbpy)(CO)3Cl (S-Sbpy = 3,3'-disulfide-2,2'-bipyridine), a sulfurated derivative of the prominent Re(bpy)(CO)3Cl class of CO2 reduction catalysts, was deposited onto the clean Ag(001) surface at room temperature. The complex is thermostable upon sublimation as supported by infrared absorption and nuclear magnetic resonance spectroscopy. Its anchoring process has been analyzed using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The growth behavior was directly contrasted to the one of the parent complex fac-Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine). The sulfurated complex nucleates as single molecule at different surface sites and at molecule clusters. In contrast, for the parent complex nucleation only occurs in clusters of several molecules at specifically oriented surface steps. While this shows that surface immobilization of the sulfurated complex is more efficient as compared to the parent, symmetry analysis of the STM topographic data supported by DFT calculations indicates that more than 90% of the complexes adsorb in a geometric configuration very similar to the one of the parent complex.

4.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598687

RESUMO

We report a rhenium diimine photosensitizer equipped with a peripheral disulfide unit on one of the bipyridine ligands, [Re(CO)3(bpy)(S-Sbpy4,4)]+ (1+, bpy = 2,2'-bipyridine, S-Sbpy4,4 = [1,2]dithiino[3,4-c:6,5-c']dipyridine), showing anti-Kasha luminescence. Steady-state and ultrafast time-resolved spectroscopies complemented by nonadiabatic dynamics simulations are used to disclose its excited-state dynamics. The calculations show that after intersystem crossing the complex evolves to two different triplet minima: a (S-Sbpy4,4)-ligand-centered excited state (3LC) lying at lower energy and a metal-to-(bpy)-ligand charge transfer (3MLCT) state at higher energy, with relative yields of 90% and 10%, respectively. The 3LC state involves local excitation of the disulfide group into the antibonding σ* orbital, leading to significant elongation of the S-S bond. Intriguingly, it is the higher-lying 3MLCT state, which is assigned to display luminescence with a lifetime of 270 ns: a signature of anti-Kasha behavior. This assignment is consistent with an energy barrier ≥ 0.6 eV or negligible electronic coupling, preventing reaction toward the 3LC state after the population is trapped in the 3MLCT state. This study represents a striking example on how elusive excited-state dynamics of transition-metal photosensitizers can be deciphered by synergistic experiments and state-of-the-art calculations. Disulfide functionalization lays the foundation of a new design strategy toward harnessing excess energy in a system for possible bimolecular electron or energy transfer reactivity.

5.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598280

RESUMO

Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.

6.
7.
Inorg Chem ; 63(12): 5652-5663, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38470330

RESUMO

Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.

8.
Chemistry ; : e202400856, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523568

RESUMO

There has been much progress on mononuclear chromium(III) complexes featuring luminescence and photoredox activity, but dinuclear chromium(III) complexes have remained underexplored in these contexts until now. We identified a tridentate chelate ligand able to accommodate both meridional and facial coordination of chromium(III), to either access a mono- or a dinuclear chromium(III) complex depending on reaction conditions. This chelate ligand causes tetragonally distorted primary coordination spheres around chromium(III) in both complexes, entailing comparatively short excited-state lifetimes in the range of 400 to 800 ns in solution at room temperature and making photoluminescence essentially oxygen insensitive. The two chromium(III) ions in the dimer experience ferromagnetic exchange interactions that result in a high spin (S=3) ground state with a coupling constant of +9.3 cm-1. Photoinduced energy transfer from the luminescent ferromagnetically coupled dimer to an anthracene derivative results in sensitized triplet-triplet annihilation upconversion. Based on these proof-of-principle studies, dinuclear chromium(III) complexes seem attractive for the development of fundamentally new types of photophysics and photochemistry enabled by magnetic exchange interactions.

9.
Angew Chem Int Ed Engl ; 63(18): e202401052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38415886

RESUMO

Radicals of the lightest group 13 element, boron, are well established and observed in numerous forms. In contrast to boron, radical chemistry involving the heavier group 13 elements (aluminum, gallium, indium, and thallium) remains largely underexplored, primarily attributed to the formidable synthetic challenges associated with these elements. Herein, we report the synthesis and isolation of planar and twisted conformers of a doubly CAAC (cyclic alkyl(amino)carbene)-radical-substituted dialane. Extensive characterization through spectroscopic analyses and X-ray crystallography confirms their identity, while quantum chemical calculations support their open-shell nature and provide further insights into their electronic structures. The dialane-connected diradicals exhibit high susceptibility to oxidation, as evidenced by electrochemical measurements and reactions with o-chloranil and a variety of organic azides. This study opens a previously uncharted class of dialuminum systems to study, broadening the scope of diradical chemistry and its potential applications.

10.
Dalton Trans ; 53(4): 1449-1459, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37909312

RESUMO

Discrete spin crossover (SCO) tetranuclear cages are a unique class of materials that have potential use in next-generation molecular recognition and sensing. In this work, two new edge-bridged SCO FeII4L6 (L = 2,7-bis(((E)-pyridin-2-ylmethylene)amino)benzo[lmn] [3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) supramolecular cages with different counter anions: ClO4- (2) and CF3SO3- (3) were constructed via subcomponent self-assembly to investigate both solvent and anion influences on their magnetic properties and compare them to cage 1 with a BF4- anion. Pyridyl-hydrazone bidentate ligand scaffolds were employed to replace the 'classical' imidazole/thiazolyl-imine coordination units to induce SCO behaviour in these cages. 2 and 3 were structurally characterized by single-crystal X-ray diffraction analysis and electrospray ionization time-of-flight mass spectrometry. Magnetic susceptibilities of 1-3 and 1-3·desolvated indicate that the solvents' presence is in favor of the low-spin (LS) state. While different counter anions in 1-3·desolvated affect the spin-state configurations of the four FeII metal centers. According to the 57Fe Mössbauer spectral analysis, the spin-state distributions in 1-3 at 80 K are [2 high-spin (HS)-2LS], [1HS-3LS] and [2HS-2LS], respectively and density functional theory calculations were employed to investigate the reasons. These findings provide insights to regulate the spin-state versatility of SCO FeII cage systems in the solid state.

11.
Inorg Chem ; 62(46): 18915-18925, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37947449

RESUMO

Three mononuclear cobalt(II) tetrahedral complexes [Co(CzPh2PO)2X2] (CzPh2PO = (9H-carbazol-9-yl)diphenylphosphine oxide and X = Cl (1), Br (2), I (3)) have been synthesized using a simple synthetic approach to examine their single-ion magnetic (SIM) behavior. A detailed study of the variation in the dynamic magnetic properties of the Co(II) ion in a tetrahedral ligand field has been carried out by the change of the halide ligand. The axial zero-field splitting parameter D was found to vary from -16.4 cm-1 in 1 to -13.8 cm-1 in 2 and +14.6 cm-1 in 3. All the new complexes exhibit field-induced SIM behavior. The results obtained from ab initio CASSF calculations match well with the experimental data, revealing how halide ions induce a change in the D value as we move from Cl- to I-. The ab initio calculations further reveal that the change in the sign of D is due to the multideterminant characteristics of the ground state wave function of 1 and 2, while single-determinant characteristics are instead observed for 3. To gain a better understanding of the relationship between the structural distortion and the sign and magnitude of D values, magnetostructural D correlations were developed using angular relationships, revealing the importance of structural distortions over the heavy halide effect in controlling the sign of D values. This study broadens the scope of employing electronically and sterically modified phosphine oxide ligands in building new types of air-stable Co(II) SIMs.

12.
Inorg Chem ; 62(45): 18338-18356, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37913548

RESUMO

Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.

13.
Chem Commun (Camb) ; 59(77): 11532-11535, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37672291

RESUMO

A labile organoazide iron complex is reported. Under ambient conditions, the azide adduct is subject to a dissociation equilibrium in solution, yet also undergoes intramolecular C-H bond amination. Single-crystal irradiation of the azide at 80 K leads to partial N2-extrusion and formation of a putative imido iron intermediate, which was computationally identified as a highly covalent {FeNR}8 species.

14.
Dalton Trans ; 52(35): 12224-12234, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656445

RESUMO

The structural evolution of spin crossover (SCO) complexes during their spin transition at equilibrium and out-of-equilibrium conditions needs to be understood to enable their successful utilisation in displays, actuators and memory components. In this study, diffraction techniques were employed to study the structural changes accompanying the temperature increase and the light irradiation of a defect [2 × 2] triiron(II) metallogrid of the form [FeII3LH2(HLH)2](BF4)4·4MeCN (FE3), LH = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole. Although a multi-temperature crystallographic investigation on single crystals evidenced that the compound does not exhibit a thermal spin transition, the structural analysis of the defect grid suggests that the flexibility of the grid, provided by a metal-devoid vertex, leads to interesting characteristics that can be used for intermolecular cooperativity in related thermally responsive systems. Time-resolved photocrystallography results reveal that upon excitation with a ps laser pulse, the defect grid shows the first two steps of the out-of-equilibrium process, namely the photoinduced and elastic steps, occurring at the ps and ns time scales, respectively. Similar to a previously reported [2 × 2] tetrairon(II) metallogrid, FE3 exhibits a local distortion of the entire grid during the photoinduced step and a long-range distortion of the lattice during the elastic step. Although the lifetime of the pure photoinduced high spin (HS) state is longer in the tetranuclear grid than in the defect grid, suggesting that the global nuclearity plays a crucial role for the lifetime of the photoinduced species, the influence of the co-crystalising solvent on the lifetime of the photoinduced HS state remains unknown. This study sheds light on the out-of-equilibrium dynamics of a thermally silent defect triiron SCO metallogrid.

15.
J Am Chem Soc ; 145(33): 18477-18486, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565682

RESUMO

The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique µ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(µ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(µ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(µ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(µ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central µ4-S in the fully reduced 0-hole state.

16.
Chem Sci ; 14(23): 6355-6374, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325133

RESUMO

For single-ion magnets (SIMs), understanding the effects of the local coordination environment and ligand field on magnetic anisotropy is key to controlling their magnetic properties. Here we present a series of tetracoordinate cobalt(ii) complexes of the general formula [FL2Co]X2 (where FL is a bidentate diamido ligand) whose electron-withdrawing -C6F5 substituents confer stability under ambient conditions. Depending on the cations X, these complexes adopt structures with greatly varying dihedral twist angle δ between the N-Co-N' chelate planes in the solid state (48.0 to 89.2°). AC and DC field magnetic susceptibility measurements show this to translate into very different magnetic properties, the axial zero-field splitting (ZFS) parameter D ranging from -69 cm-1 to -143 cm-1 with substantial or negligible rhombic component E, respectively. A close to orthogonal arrangement of the two N,N'-chelating σ- and π-donor ligands at the Co(ii) ion is found to raise the energy barrier for magnetic relaxation to above 400 K. Multireference ab initio methods were employed to describe the complexes' electronic structures, and the results were analyzed within the framework of ab initio ligand field theory to probe the nature of the metal-ligand bonding and spin-orbit coupling. A relationship between the energy gaps of the first few electronic transitions and the ZFS was established, and the ZFS was correlated with the dihedral angle δ as well as with the metal-ligand bonding variations, viz. the two angular overlap parameters eσ and eπs. These findings not only give rise to a Co(ii) SIM showing open hysteresis up to 3.5 K at a sweep rate of 30 Oe s-1, but they also provide design guidelines for Co(ii) complexes with favorable SIM signatures or even switchable magnetic relaxation properties.

17.
JACS Au ; 3(2): 429-440, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873706

RESUMO

A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.

19.
Chemistry ; 29(33): e202300649, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36971510

RESUMO

Alpha-Synuclein (α-Synuclein) is a 140 amino acid protein implicated in neurodegenerative disorders known as synucleinopathies, where it accumulates in proteinaceous inclusions in the brain. The normal physiological function of α-Synuclein remains obscure, as it exists in several non-neuronal cells in which its function has not been studied. Given the tremendous interest in studying α-Synuclein, and the existing limitations in the production of modified forms of the protein, we developed a method for the chemical synthesis of α-Synuclein by combining peptide fragment synthesis via automated microwave-assisted solid-phase peptide synthesis and ligation strategies. Our synthetic pathway enables the synthesis of protein variants of interest, carrying either mutations or posttranslational modifications, for further investigations of the effects on the structure and aggregation behavior of the protein. Ultimately, our study forms the foundation for future syntheses and studies of other custom-made α-Synuclein variants with a single or several modifications, as necessary.


Assuntos
Doenças Neurodegenerativas , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Técnicas de Síntese em Fase Sólida , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Processamento de Proteína Pós-Traducional , Encéfalo/metabolismo
20.
Inorg Chem ; 62(7): 3153-3161, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36744742

RESUMO

The rational design of 3d-metal-based single-molecule magnets (SMM) requires a fundamental understanding of their intrinsic electronic and structural properties and how they translate into experimentally observable features. Here, we determined the magnetic properties of the linear iron(I) silylamides K{crypt}[FeL2] and [KFeL2] (L = -N(Dipp)SiMe3; crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosan). For the former, slow-relaxation of the magnetization with a spin reversal barrier of Ueff = 152 cm-1 as well as a closed-waist magnetic hysteresis and magnetic blocking below 2.5 K are observed. For the more linear [KFeL2], in which the potassium cation is encapsulated by the aryl substituents of the amide ligands, the relaxation barrier and the blocking temperature increase to Ueff = 184 cm-1 and TB = 4.5 K, respectively. The increase is rationalized by a more pronounced axial anisotropy in [KFeL2] determined by dc-SQUID magnetometry. The effective relaxation barrier of [KFeL2] is in agreement with the energy spacing between the ground and first-excited magnetic states, as obtained by field-dependent IR-spectroscopy (178 cm-1), magnetic measurements (208 cm-1), as well as theoretical analysis (212 cm-1). In comparison with the literature, the results show that magnetic coercivity in linear iron(I) silylamides is driven by the degree of linearity in conjunction with steric encumbrance, whereas the ligand symmetry is a marginal factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...