Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Brain Behav Immun ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986723

RESUMO

Microglia are increasingly recognized to contribute to brain health and disease. Preclinical studies using laboratory rodents are essential to advance our understanding of the physiological and pathophysiological functions of these cells in the central nervous system. Rodents are nocturnal animals, and they are mostly maintained in a defined light-dark cycle within animal facilities, with many laboratories investigating microglial molecular and functional profiles during the animals' light (sleep) phase. However, only a few studies have considered possible differences in microglial functions between the active and sleep phases. Based on initial evidence suggesting that microglial intrinsic clock genes can affect their phenotypes, we sought to investigate differences in transcriptional, proteotype and functional profiles of microglia between light (sleep) and dark (active) phases, and how these changes are affected in pathological models. We found marked transcriptional and proteotype differences between microglia harvested from male mice during the light or dark phase. Amongst others, these differences related to genes and proteins associated with immune responses, motility, and phagocytosis, which were reflected by functional alterations in microglial synaptic pruning and response to bacterial stimuli. Possibly accounting for such changes, we found RNA and protein regulation in SWI/SNF and NuRD chromatin remodeling complexes between light and dark phases. Importantly, we also show that the time of microglial sample collection influences the nature of microglial transcriptomic changes in a model of immune-mediated neurodevelopmental disorders. Our findings emphasize the importance of considering diurnal factors in studying microglial cells and indicate that implementing a circadian perspective is pivotal for advancing our understanding of their physiological and pathophysiological roles in brain health and disease.

2.
Brain Behav Immun ; 120: 391-402, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897330

RESUMO

Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.

3.
Microbes Infect ; : 105382, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944109

RESUMO

The endogenous retrovirus type W (HERV-W) is a human-specific entity, which was initially discovered in multiple sclerosis (MS) patient derived cells. We initially found that the HERV-W envelope (ENV) protein negatively affects oligodendrogenesis and controls microglial cell polarization towards a myelinated axon associated and damaging phenotype. Such first functional assessments were conducted ex vivo, given the human-specific origin of HERV-W. Recent experimental evidence gathered on a novel transgenic mouse model, mimicking activation and expression of the HERV-W ENV protein, revealed that all glial cell types are impacted and that cellular fates, differentiation, and functions were changed. In order to identify HERV-W-specific signatures in glial cells, the current study analyzed the transcriptome of ENV protein stimulated microglial- and astroglial cells and compared the transcriptomic signatures to lipopolysaccharide (LPS) stimulated cells, owing to the fact that both ligands can activate toll-like receptor-4 (TLR-4). Additionally, a comparison between published disease associated glial signatures and the transcriptome of HERV-W ENV stimulated glial cells was conducted. We, therefore, provide here for the first time a detailed molecular description of specific HERV-W ENV evoked effects on those glial cell populations that are involved in smoldering neuroinflammatory processes relevant for progression of neurodegenerative diseases.

4.
Brain Behav Immun ; 118: 236-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431238

RESUMO

Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Cloridrato de Raloxifeno , Humanos , Adulto Jovem , Ratos , Feminino , Masculino , Animais , Adulto , Cloridrato de Raloxifeno/farmacologia , Dopamina/metabolismo , Receptores de Estrogênio , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Anfetamina/farmacologia , RNA Mensageiro , Comportamento Animal/fisiologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Mamíferos/metabolismo
5.
medRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352405

RESUMO

Background and Objectives: Emerging preclinical evidence suggests that vagal signals contribute to the development of schizophrenia-related abnormalities in brain and behavior. Whether vagal communication in general, and its impairment in particular, is a risk factor for schizophrenia in humans remains, however, unclear. Vagotomy, the surgical lesion of the vagus nerve, was routinely performed as a treatment for peptic ulcer before modern treatment options were available. Hence, the primary aim of this study was to investigate whether vagotomy modulates the subsequent risk of developing schizophrenia. Moreover, given the existence of diverse vagotomy techniques (i.e., "truncal" or "selective"), our secondary goal was to test whether the extent of denervation modulates the risk of schizophrenia. Methods: Using a nationwide retrospective matched cohort design, we identified 8,315 vagotomized individuals from the Swedish National Patient Register during the period 1970-2020 and 40,855 non-vagotomized individuals matching for age, sex and type of peptic ulcer. The risk of being diagnosed with schizophrenia and associated psychoses (ICD10 codes F20-29) was analyzed using Cox proportional hazards regression models, including death as competing risk. Results: When considering all types of vagotomy together, vagotomy was not significantly associated with schizophrenia (HR: 0.91 [0.72; 1.16]). However, truncal vagotomy (which denervates all subdiaphragmatic organs) significantly increased the risk of developing schizophrenia by 69% (HR: 1.69 [1.08; 2.64]), whereas selective vagotomy (which only denervates the stomach) showed no significant association (HR: 0.80 [0.61; 1.04]). Discussion: Our results provide epidemiological support for the hypothesis that impairments in vagal functions could increase the risk of schizophrenia. Notably, the finding that truncal but not selective vagotomy is associated with an increased risk of schizophrenia raises the possibility that the activity of subdiaphragmatic non-gastric vagal branches may be of particular relevance for the development of schizophrenia.

6.
Annu Rev Pharmacol Toxicol ; 64: 27-31, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37816308

RESUMO

The reviews in Volume 64 of the Annual Review of Pharmacology and Toxicology cover diverse topics. A common theme in many of the reviews is the interindividual variability in the clinical response to drugs. Highlighted areas include emerging developments in pharmacogenomics that can predict the personal risk for drug inefficacy and/or adverse drug reactions. Other reviews focus on the use of circulating biomarkers to define drug metabolism phenotypes and the effect of circadian regulation on drug response. Another emerging technology, digital twins that model individual patients, is used to generate computational simulations of drug effects and identify optimal personalized treatments. Another variable that may affect clinical outcomes, the nocebo response (an adverse reaction to a placebo), complicates clinical trials. These reviews further document that pharmacological individuality is an essential component of the concepts of personalized medicine and precision medicine and will likely have an important impact on patient care.


Assuntos
Medicina de Precisão , Humanos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacogenética , Fenótipo
7.
Lab Anim (NY) ; 53(1): 18-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151528

RESUMO

Theoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories. For the standardized design, each laboratory ordered mice from a single breeding site (each laboratory from a different one), while for the HET design, each laboratory ordered proportionate numbers of mice from the five remaining breeding sites. To test our hypothesis, we assessed 14 outcome variables, including body weight, behavioral measures obtained from a single session on an elevated plus maze, and clinical blood parameters. Both breeding site and test laboratory affected variation in outcome variables, but the effect of test laboratory was more pronounced for most outcome variables. Moreover, heterogenization of study populations by breeding site (HET) did not reduce variation in outcome variables between test laboratories, which was most likely due to the fact that breeding site had only little effect on variation in outcome variables, thereby limiting the scope for HET to reduce between-lab variation. We conclude that heterogenization of study populations by breeding site has limited capacity for improving the replicability of results from single-laboratory animal studies.


Assuntos
Experimentação Animal , Comportamento Animal , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Projetos de Pesquisa
8.
Proc Natl Acad Sci U S A ; 120(38): e2308187120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695891

RESUMO

The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.


Assuntos
Retrovirus Endógenos , Esclerose Múltipla , Humanos , Animais , Camundongos , Retrovirus Endógenos/genética , Neuroglia , Animais Geneticamente Modificados , Bainha de Mielina , Esclerose Múltipla/genética
9.
Transl Psychiatry ; 13(1): 272, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524719

RESUMO

Epidemiology has repeatedly associated certain infections with a risk of further developing psychiatric diseases. Such infections can activate retro-transposable genetic elements (HERV) known to trigger immune receptors and impair synaptic plasticity of neuroreceptors. Since the HERV-W ENV protein was recently shown to co-cluster with pro-inflammatory cytokines in a subgroup of patients with schizophrenia or bipolar disorder, we questioned the influence of the COVID-19 pandemic on patients with psychosis spectrum disorders (PSD). Present results revealed that (i) SARS-CoV-2 serology shows high prevalence and titers of antibodies in PSD, (ii) HERV-W ENV is detected in seropositive individuals only and (iii) SARS-CoV-2 and HERV-W ENV positivity co-clustered with high serum levels of pro-inflammatory cytokines in psychotic patients. These results thus suggest that SARS-CoV-2 infection in many patients with psychotic disorders now admitted in the psychiatry department did not cause severe COVID-19. They also confirm the previously reported association of elevated serum pro-inflammatory cytokines and HERV-W ENV in a subgroup of psychotic patients. In the context of the COVID-19 pandemic, this cluster is only found in SARS-CoV-2 seropositive PSD cases, suggesting a dominant influence of this virus on HERV-W ENV and cytokine expression, and/or patients' greater susceptibility to SARS-CoV-2 infection. Further investigation on an interplay between this viral infection and the clinical evolution of such PSD patients is needed. However, this repeatedly defined subgroup of psychotic patients with a pro-inflammatory phenotype and HERV expression calls for a differential therapeutic approach in psychoses, therefore for further precision medicine development.


Assuntos
COVID-19 , Retrovirus Endógenos , Transtornos Psicóticos , Esquizofrenia , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/genética , Esquizofrenia/genética , Transtornos Psicóticos/genética , Inflamação/genética
10.
Brain Behav Immun ; 111: 230-246, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100210

RESUMO

The prefrontal cortex (PFC) provides executive top-down control of a variety of cognitive processes. A distinctive feature of the PFC is its protracted structural and functional maturation throughout adolescence to early adulthood, which is necessary for acquiring mature cognitive abilities. Using a mouse model of cell-specific, transient and local depletion of microglia, which is based on intracerebral injection of clodronate disodium salt (CDS) into the PFC of adolescent male mice, we recently demonstrated that microglia contribute to the functional and structural maturation of the PFC in males. Because microglia biology and cortical maturation are partly sexually dimorphic, the main objective of the present study was to examine whether microglia similarly regulate this maturational process in female mice as well. Here, we show that a single, bilateral intra-PFC injection of CDS in adolescent (6-week-old) female mice induces a local and transient depletion (70 to 80% decrease from controls) of prefrontal microglia during a restricted window of adolescence without affecting neuronal or astrocytic cell populations. This transient microglia deficiency was sufficient to disrupt PFC-associated cognitive functions and synaptic structures at adult age. Inducing transient prefrontal microglia depletion in adult female mice did not cause these deficits, demonstrating that the adult PFC, unlike the adolescent PFC, is resilient to transient microglia deficiency in terms of lasting cognitive and synaptic maladaptations. Together with our previous findings in males, the present findings suggest that microglia contribute to the maturation of the female PFC in a similar way as to the prefrontal maturation occurring in males.


Assuntos
Microglia , Neurônios , Masculino , Feminino , Animais , Seguimentos , Neurônios/fisiologia , Cognição , Córtex Pré-Frontal
11.
Cereb Cortex ; 33(5): 2273-2286, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36857721

RESUMO

Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.


Assuntos
Encéfalo , Cognição , Fenômenos do Sistema Imunitário , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Modelos Animais de Doenças , Epigênese Genética , Poli I-C , Camundongos
12.
Brain Behav Immun ; 107: 201-214, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243285

RESUMO

Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.


Assuntos
Família , Vitaminas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mamíferos
13.
Annu Rev Pharmacol Toxicol ; 63: 15-18, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270297

RESUMO

Investigations in pharmacology and toxicology range from molecular studies to clinical care. Studies in basic and clinical pharmacology and in preclinical and clinical toxicology are all essential in bringing new knowledge and new drugs into clinical use. The 30 reviews in Volume 63 of the Annual Review of Pharmacology and Toxicology explore topics across this spectrum. Examples include "Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology" and "Artificial Intelligence and Machine Learning for Lead-to-Candidate Decision-Making and Beyond." Other reviews discuss components important for drug discovery and development and the use of pharmaceuticals in a variety of diseases. Air pollution continues to increase globally; accordingly, "Air Pollution-Related Neurotoxicity Across the Life Span" is a timely and forward-thinking review. Volume 63 also explores the use of contemporary technologies such as electronic health records, pharmacogenetics, and new drug delivery systems that help enhance and improve the utility of new therapies.


Assuntos
Inteligência Artificial , Peixe-Zebra , Animais , Humanos , Farmacogenética , Preparações Farmacêuticas , Descoberta de Drogas
14.
Brain Behav Immun ; 107: 242-252, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270439

RESUMO

Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.


Assuntos
Retrovirus Endógenos , Transtornos Mentais , Humanos , Retrovirus Endógenos/genética , Transtornos Mentais/genética
15.
Curr Top Behav Neurosci ; 61: 71-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36306055

RESUMO

The epidemiological literature reporting increased risk for neurodevelopmental and psychiatric disorders after prenatal exposure to maternal immune activation (MIA) is still evolving, and so are the attempts to model this association in animals. Epidemiological studies of MIA offer the advantage of directly evaluating human populations but are often limited in their ability to uncover pathogenic mechanisms. Animal models, on the other hand, are limited in their generalizability to psychiatric disorders but have made significant strides toward discovering causal relationships and biological pathways between MIA and neurobiological phenotypes. Like in any other model system, both planned and unplanned sources of variability exist in animal models of MIA. Therefore, the design, implementation, and interpretation of MIA models warrant a careful consideration of these sources, so that appropriate strategies can be developed to handle them satisfactorily. While every research group may have its own strategy to this aim, it is essential to report the methodological details of the chosen MIA model in order to enhance the transparency and comparability of models across research laboratories. Even though it poses a challenge for attempts to compare experimental findings across laboratories, variability does not undermine the utility of MIA models for translational research. In fact, variability and heterogenous outcomes in MIA models offer unique opportunities for new discoveries and developments in this field, including the identification of disease pathways and molecular mechanisms determining susceptibility and resilience to MIA. This review summarizes the most important sources of variability in animal models of MIA and discusses how model variability can be used to investigate neurobiological and immunological factors causing phenotypic heterogeneity in offspring exposed to MIA.


Assuntos
Transtornos Mentais , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Animais , Comportamento Animal/fisiologia , Poli I-C , Modelos Animais de Doenças
16.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293208

RESUMO

Circular RNAs (circRNAs) are a large class of relatively stable RNA molecules that are highly expressed in animal brains. Many circRNAs have been associated with CNS disorders accompanied by an aberrant wake-sleep cycle. However, the regulation of circRNAs in brain homeostasis over daily light-dark (LD) cycles has not been characterized. Here, we aim to quantify the daily expression changes of circRNAs in physiological conditions in healthy adult animals. Using newly generated and public RNA-Seq data, we monitored circRNA expression throughout the 12:12 h LD cycle in various mouse brain regions. We identified that Cdr1as, a conserved circRNA that regulates synaptic transmission, is highly expressed in the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Despite its high stability, Cdr1as has a very dynamic expression in the SCN throughout the LD cycle, as well as a significant regulation in the hippocampus following the entry into the dark phase. Computational integration of different public datasets predicted that Cdr1as is important for regulating light entrainment in the SCN. We hypothesize that the expression changes of Cdr1as in the SCN, particularly during the dark phase, are associated with light-induced phase shifts. Importantly, our work revises the current beliefs about natural circRNA stability and suggests that the time component must be considered when studying circRNA regulation.


Assuntos
Fotoperíodo , RNA Circular , Camundongos , Animais , RNA Circular/genética , Ritmo Circadiano/genética , Núcleo Supraquiasmático/metabolismo , Luz
17.
Sci Adv ; 8(9): eabi6672, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235358

RESUMO

The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain's resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development.

18.
Annu Rev Pharmacol Toxicol ; 62: 19-24, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34606327

RESUMO

The reviews in Volume 62 of the Annual Review of Pharmacology and Toxicology (ARPT) cover a diverse range of topics. A theme that encompasses many of these reviews is their relevance to common diseases and disorders, including type 2 diabetes, heart failure, cancer, tuberculosis, Alzheimer's disease, neurodegenerative disorders, and Down syndrome. Other reviews highlight important aspects of therapeutics, including placebos and patient-centric approaches to drug formulation. The reviews with this thematic focus, as well as other reviews in this volume, emphasize new mechanistic insights, experimental and therapeutic strategies, and novel insights regarding topics in the disciplines of pharmacology and toxicology. As the editors of ARPT, we believe that these reviews help advance those disciplines and, even more importantly, have the potential to improve the health care of the world's population.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos
19.
Brain Behav Immun ; 99: 3-8, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547401

RESUMO

Viral infections during pregnancy are associated with increased incidence of psychiatric disorders in offspring. The pathological outcomes of viral infection appear to be caused by the deleterious effects of innate immune response-associated factors on development of the fetus, which predispose the offspring to pathological conditions in adulthood. The negative impact of viral infections varies substantially between pregnancies. Here, we explored whether differential stress sensitivity underlies the high heterogeneity of immune reactivity and whether this may influence the pathological consequences of maternal immune activation. Using mouse models of social dominance (Dom) and submissiveness (Sub), which possess innate features of stress resilience and vulnerability, respectively, we identified differential immune reactivity to the synthetic analogue of viral double-stranded RNA, Poly(I:C), in Sub and Dom nulliparous and pregnant females. More specifically, we found that Sub females showed an exacerbated pro- and anti-inflammatory cytokine response to Poly(I:C) as compared with Dom females. Sub offspring born to Sub mothers (stress sensitive offspring) showed enhanced locomotory response to the non-competitive NMDA antagonist, MK-801, which was potentiated by prenatal Poly(I:C) exposure. Our findings suggest that inherited stress sensitivity may lead to functional changes in glutamatergic signaling, which in turn is further exacerbated by prenatal exposure to viral-like infection. The maternal immunome seems to play a crucial role in these observed phenomena.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/fisiologia , Citocinas , Modelos Animais de Doenças , Feminino , Camundongos , Poli I-C/farmacologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...