Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 20(3): 367-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23955888

RESUMO

Huanglongbing (HLB) is the most destructive disease of citrus worldwide. The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the vector of the phloem-inhabiting bacterium, Candidatus Liberibacter asiaticus, which is presumed to cause HLB in Florida citrus. Laboratory and field studies were conducted to examine the behavioral responses of male and female D. citri to their cuticular extracts. In olfactometer assays, more male D. citri were attracted to one, five, or 10 female cuticular extract equivalent units than blank controls. The results were confirmed in field studies in which clear or yellow traps baited with 10 female cuticular extract equivalent units attracted proportionately more males than clear traps baited with male cuticular extract or unbaited traps. Analyses of cuticular constituents of male and female D. citri revealed differences between the sexes in chemical composition of their cuticular extracts. Laboratory bioassays with synthetic chemicals identified from cuticular extracts indicated that dodecanoic acid attracted more males than clean air. Traps baited with dodecanoic acid did not increase total catch of D. citri as compared with blank traps at the dosages tested; however, the sex ratio of psyllid catch was male biased on traps baited with the highest lure loading dosage tested (10.0 mg).


Assuntos
Comportamento Animal/efeitos dos fármacos , Hemípteros/química , Hemípteros/metabolismo , Hidrocarbonetos/química , Hidrocarbonetos/farmacologia , Tegumento Comum , Animais , Feminino , Masculino , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia
2.
Bull Entomol Res ; 103(5): 592-600, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23590847

RESUMO

ß-Aminobutyric acid (BABA) is known to induce resistance to microbial pathogens, nematodes and insects in several host plant/pest systems. The present study was undertaken to determine whether a similar effect of BABA occurred against the Asian citrus psyllid, Diaphorina citri Kuwayama, in citrus. A 25 mM drench application of BABA significantly reduced the number of eggs/plant as compared with a water control, whereas 200 and 100 mM applications of BABA reduced the numbers of nymphs/plant and adults/plants, respectively. A 5 mM foliar application of BABA significantly reduced the number of adults but not eggs or nymphs when compared with a water control treatment. In addition, leaf-dip bioassays using various concentrations (25­500 mM) of BABA indicated no direct toxic effect on 2nd and 5th instar nymphs or adult D. citri. BABA-treated plants were characterized by significantly lower levels of iron, magnesium, phosphorus, sodium, sulfur and zinc as compared with control plants. The expression level of the PR-2 gene (ß-1,3-glucanase) in BABA-treated plants that were also damaged by D. citri adult feeding was significantly higher than in plants exposed to BABA, D. citri feeding alone or control plants. Our results indicate the potential for using BABA as a systemic acquired resistance management tool for D. citri.


Assuntos
Aminobutiratos , Citrus , Hemípteros , Controle de Insetos , Animais , Feminino , Masculino , Ninfa
3.
Commun Integr Biol ; 2(5): 391-3, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19907696

RESUMO

Many insects deposit marking pheromones following egg-laying that signal an occupied and thus sub-optimal resource. Herbivorous insects mark host fruit or other vegetative plant parts after depositing eggs, while insect parasitoids deposit such pheromones directly on the cuticle of a particular life stage of their prey. These oviposition marking pheromones (OMPs) are then recognized by conspecifics, which avoid subsequent egg-laying in the previously utilized and unsuitable host. Since many host resources are capable of supporting a limited number of offspring, these pheromones function to decrease competition among the brood, which increases survival rate of the subsequent generation. In rare instances, distinct species of phytophagous and parasitic insects will inspect the same substrate following egg-laying.1 Recently, Stelinski et al.1 have demonstrated that in such instances, the herbivore is able to learn to recognize its predator's OMP and utilize it to its advantage by avoiding oviposition into unsuitable host fruit. This recognition of a foreign marking pheromone occurs in a multitrophic context since both herbivore and parasitoid inspect, oviposit into, and mark the same substrate (i.e., fruit surface). In this Article Addendum, we further show that this recognition of a foreign pheromone is both context-dependent and mediated by preimaginal conditioning.

4.
Environ Entomol ; 38(4): 1250-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19689907

RESUMO

Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is an important pest of citrus. It is an efficient vector of three bacterial pathogens that are the presumptive causal agents of huanglongbing (HLB) or citrus greening disease. The movement patterns and dispersal capabilities of D. citri require study to better understand the spread of HLB and to improve management strategies for D. citri. A recently developed immunomarking technique that uses crude food proteins (chicken egg albumin, bovine casein, and soy protein) was evaluated for marking and tracking movement of D. citri in Florida citrus groves. In general, both egg and milk protein markers exhibited longer residual activity (35 d) than the soy protein marker (20 d) when applied to citrus leaves with a residual activity order of egg > milk > soy protein. However, residues of all three protein markers decreased with a simulated rain; this was more pronounced for soy protein than for egg and milk proteins. Temperature did not significantly affect acquisition of markers by adult D. citri. Egg, milk, and soy protein markers were detected on >90% of adult D. citri for up to 10, 10, and 5 d, respectively, after field application. Addition of tetrasodium ethylenediamine tetraacetic acid (water softener) and/or Silwet L-77 (wetting agent) to marker solutions did not affect longevity of detection. Each of the protein markers was detected on > or =80% of exposed D. citri for up to 30 d after direct application to adults. A field study was conducted to measure movement of D. citri between replicated pairs of 0.4 ha managed and unmanaged citrus plots separated by 60-100 m. Approximately 70% of captured D. citri were found marked 3 d after application of proteins in the field. Using two marker proteins, it was determined that D. citri moved bi-directionally between managed and unmanaged (abandoned) groves within 3 d with a greater number of D. citri adults moving from unmanaged into managed plots than from managed into unmanaged plots (net movement). These data indicate frequent movement by adult D. citri between groves and suggest that unmanaged groves may act as refuge sites for D citri, leading to reinfestation of nearby managed groves.


Assuntos
Comportamento Animal , Biomarcadores/análise , Citrus , Hemípteros , Folhas de Planta , Animais , Bovinos , Proteínas do Ovo/análise , Ensaio de Imunoadsorção Enzimática , Proteínas do Leite/análise , Proteínas de Soja/análise , Temperatura
5.
Micron ; 39(8): 1184-91, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18573664

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is one of the most significant economic pests of citrus worldwide. This insect vectors three phloem-restricted bacteria in the genus Candidatus Liberibacter that cause huanglongbing (citrus greening), the most severe disease limiting citrus production worldwide. We examined the external morphology of the antennal sensilla of male and female D. citri using scanning electron microscopy (SEM) and determined the putative functions of the identified sensilla using transmission electron microscopic (TEM) techniques. The filiform antennae of D. citri were of the conventional type comprised of a basal scape, pedicel and a long, thread-like flagellum, which is composed of eight flagellomeres. Eleven morphologically unique sensillar types were found and described on the antennae of male and female D. citri. Of those identified, the two apical setae, multiporous types I and II sensilla trichoidea, and the antennal rhinaria were porous and may be involved in perception of host- and mate-related volatile chemicals. However, the aporous types I, II and III sensilla trichoidea may have mechanosensory functions and the chaetica sensilla, cavity sensilla and unidentified uniporous sensilla may be involved in proprioception, thermo-hygroreception and cold detection, respectively. The shape, external morphology and array of sensilla on the antennae of male and female D. citri were similar. The only major difference observed was in the morphology of the short apical setae, whose tips were recessed inward in females but not so in males. The results are discussed in relation to plausible roles of the identified sensilla in mate and host location by this species.


Assuntos
Citrus/parasitologia , Hemípteros/ultraestrutura , Órgãos dos Sentidos/ultraestrutura , Animais , Feminino , Hemípteros/fisiologia , Masculino , Microscopia Eletrônica de Varredura , Órgãos dos Sentidos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...