Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446002

RESUMO

Achieving micro-kelvin (µK) temperature stability is critical for many calorimetric applications. For example, sub-nanowatt resolution biocalorimetry requires stabilization of the temperature of the calorimeter to µK levels. Here, we describe how µK temperature stability can be accomplished in a prototypical calorimetric system consisting of two nested shields and a suspended capillary tube, which is well suited for biocalorimetry applications. Specifically, we show that by employing nested shields with µTorr-levels of vacuum in the space between them as well as precise feedback control of the temperature of the shields (performed using high-resolution temperature sensors), the effect of ambient temperature fluctuations on the inner shield and the capillary tube can be attenuated by ∼100 dB. We also show that this attenuation is key to achieving temperature stabilities within ±1 and ±3 µK (amplitude of oscillations) for the inner shield and the capillary tube sensor, respectively, measured in a bandwidth of 1 mHz over a period of 10 h at room temperature (∼20.9 ± 0.2 °C). We expect that the methods described here will play a key role in advancing biocalorimetry.

2.
Phys Rev Lett ; 131(19): 196302, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000410

RESUMO

Recent experiments, at room temperature, have shown that near-field radiative heat transfer (NFRHT) via surface phonon polaritons (SPhPs) exceeds the blackbody limit by several orders of magnitude. Yet, SPhP-mediated NFRHT at cryogenic temperatures remains experimentally unexplored. Here, we probe thermal transport in nanoscale gaps between a silica sphere and a planar silica surface from 77-300 K. These experiments reveal that cryogenic NFRHT has strong contributions from SPhPs and does not follow the T^{3} temperature (T) dependence of far-field thermal radiation. Our modeling based on fluctuational electrodynamics shows that the temperature dependence of NFRHT can be related to the confinement of heat transfer to two narrow frequency ranges and is well accounted for by a simple analytical model. These advances enable detailed NFRHT studies at cryogenic temperatures that are relevant to thermal management and solid-state cooling applications.

3.
J Am Chem Soc ; 145(43): 23541-23555, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874166

RESUMO

Molecular junctions offer significant potential for enhancing thermoelectric power generation. Quantum interference effects and associated sharp features in electron transmission are expected to enable the tuning and enhancement of thermoelectric properties in molecular junctions. To systematically explore the effect of quantum interferences, we designed and synthesized two new classes of porphyrins, P1 and P2, with two methylthio anchoring groups in the 2,13- and 2,12-positions, respectively, and their Zn complexes, Zn-P1 and Zn-P2. Past theory suggests that P1 and Zn-P1 feature destructive quantum interference in single-molecule junctions with gold electrodes and may thus show high thermopower, while P2 and Zn-P2 do not. Our detailed experimental single-molecule break-junction studies of conductance and thermopower, the latter being the first ever performed on porphyrin molecular junctions, revealed that the electrical conductance of the P1 and Zn-P1 junctions is relatively close, and the same holds for P2 and Zn-P2, while there is a 6 times reduction in the electrical conductance between P1 and P2 type junctions. Further, we observed that the thermopower of P1 junctions is slightly larger than for P2 junctions, while Zn-P1 junctions show the largest thermopower and Zn-P2 junctions show the lowest. We relate the experimental results to quantum transport theory using first-principles approaches. While the conductance of P1 and Zn-P1 junctions is robustly predicted to be larger than those of P2 and Zn-P2, computed thermopowers depend sensitively on the level of theory and the single-molecule junction geometry. However, the predicted large difference in conductance and thermopower values between Zn-P1 and Zn-P2 derivatives, suggested in previous model calculations, is not supported by our experimental and theoretical findings.

4.
Nano Lett ; 23(6): 2187-2194, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36888651

RESUMO

Near-field radiative heat transfer (NFRHT) arises between objects separated by nanoscale gaps and leads to dramatic enhancements in heat transfer rates compared to the far-field. Recent experiments have provided first insights into these enhancements, especially using silicon dioxide (SiO2) surfaces, which support surface phonon polaritons (SPhP). Yet, theoretical analysis suggests that SPhPs in SiO2 occur at frequencies far higher than optimal. Here, we first show theoretically that SPhP-mediated NFRHT, at room temperature, can be 5-fold larger than that of SiO2, for materials that support SPhPs closer to an optimal frequency of 67 meV. Next, we experimentally demonstrate that MgF2 and Al2O3 closely approach this limit. Specifically, we demonstrate that near-field thermal conductance between MgF2 plates separated by 50 nm approaches within nearly 50% of the global SPhP bound. These findings lay the foundation for exploring the limits to radiative heat transfer rates at the nanoscale.

5.
Phys Rev Lett ; 129(14): 145901, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240403

RESUMO

Near-field radiative heat transfer (NFRHT) between planar metallic surfaces was computationally explored over five decades ago by Polder and van Hove [Phys. Rev. B 4, 3303 (1971)PLRBAQ0556-280510.1103/PhysRevB.4.3303]. These studies predicted that, as the gap size (d) between the surfaces decreased, the radiative heat flux first increases by several orders of magnitude until d is ∼100 nm after which the heat flux saturates. However, despite both the fundamental and practical importance of these predictions, the combined enhancement and saturation of NFRHT at small gaps in metallic surfaces remains experimentally unverified. Here, we probe NFRHT between planar metallic (Pt, Au) surfaces and show that RHT rates can exceed the far-field rate by over a thousand times when d is reduced to ∼25 nm. More importantly, we show that for small values of d RHT saturates due to the dominant contributions from transverse electric evanescent modes. Our results are in excellent agreement with the predictions of fluctuational electrodynamics and are expected to inform the development of technologies such as near-field thermophotovoltaics, radiative heat-assisted magnetic recording, and nanolithography.

6.
ACS Nano ; 16(1): 939-950, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34958551

RESUMO

Quantitative mapping of temperature fields with nanometric resolution is critical in various areas of scientific research and emerging technology, such as nanoelectronics, surface chemistry, plasmonic devices, and quantum systems. A key challenge in achieving quantitative thermal imaging with scanning thermal microscopy (SThM) is the lack of knowledge of the tip-sample thermal resistance (RTS), which varies with local topography and is critical for quantifying the sample temperature. Recent advances in SThM have enabled simultaneous quantification of RTS and topography in situations where the temperature field is modulated enabling quantitative thermometry even when topographical features cause significant variations in RTS. However, such an approach is not applicable to situations where the temperature modulation of the device is not readily possible. Here we show, using custom-fabricated scanning thermal probes (STPs) with a sharp tip (radius ∼25 nm) and an integrated heater/thermometer, that one can quantitatively map unmodulated temperature fields, in a single scan, with ∼7 nm spatial resolution and ∼50 mK temperature resolution in a bandwidth of 1 Hz. This is accomplished by introducing a modulated heat input to the STP and measuring the AC and DC responses of the probe's temperature which allow for simultaneous mapping of the tip-sample thermal resistance and sample surface temperature. The approach presented here─contact resistance resolved scanning thermal microscopy (CR-SThM)─can greatly facilitate temperature mapping of a variety of microdevices under practical operating conditions.

7.
Nat Commun ; 12(1): 4364, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272361

RESUMO

Thermophotovoltaic approaches that take advantage of near-field evanescent modes are being actively explored due to their potential for high-power density and high-efficiency energy conversion. However, progress towards functional near-field thermophotovoltaic devices has been limited by challenges in creating thermally robust planar emitters and photovoltaic cells designed for near-field thermal radiation. Here, we demonstrate record power densities of ~5 kW/m2 at an efficiency of 6.8%, where the efficiency of the system is defined as the ratio of the electrical power output of the PV cell to the radiative heat transfer from the emitter to the PV cell. This was accomplished by developing novel emitter devices that can sustain temperatures as high as 1270 K and positioning them into the near-field (<100 nm) of custom-fabricated InGaAs-based thin film photovoltaic cells. In addition to demonstrating efficient heat-to-electricity conversion at high power density, we report the performance of thermophotovoltaic devices across a range of emitter temperatures (~800 K-1270 K) and gap sizes (70 nm-7 µm). The methods and insights achieved in this work represent a critical step towards understanding the fundamental principles of harvesting thermal energy in the near-field.

8.
ACS Sens ; 6(2): 387-398, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33226229

RESUMO

Calorimetry of reactions involving nanomaterials is of great current interest, but requires high-resolution heat flow measurements and long-term thermal stability. Such studies are especially challenging at elevated reaction pressures and temperatures. Here, we present an instrument for measuring the enthalpy of reactions between gas-phase reactants and milligram scale nanomaterial samples. This instrument can resolve the net change in the amount of gas-phase reactants due to surface reactions in an operating range from room temperature to 300 °C and reaction pressures of 10 mbar to 30 bar. The calorimetric resolution is shown to be <3 µW/√Hz, with a long-term stability <4 µW/hour. The performance of the instrument is demonstrated via a set of experiments involving H2 absorption on Pd nanoparticles at various pressures and temperatures. For this specific reaction, we obtained a mass balance resolution of 0.1 µmol/√Hz. Results from these experiments are in good agreement with past studies establishing the feasibility of performing high resolution calorimetry on milligram scale nanomaterials, which can be employed in future studies probing catalysis, phase transformations, and thermochemical energy storage.


Assuntos
Temperatura Alta , Nanoestruturas , Calorimetria , Temperatura , Termodinâmica
9.
Nat Commun ; 11(1): 2983, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532993

RESUMO

Calorimetry has been widely used in metabolic studies, but direct measurements from individual small biological model organisms such as C. elegans or isolated single cells have been limited by poor sensitivity of existing techniques and difficulties in resolving very small heat outputs. Here, by careful thermal engineering, we developed a robust, highly sensitive and bio-compatible calorimetric platform that features a resolution of ~270 pW-more than a 500-fold improvement over the most sensitive calorimeter previously used for measuring the metabolic heat output of C. elegans. Using this calorimeter, we demonstrate time-resolved metabolic measurements of single C. elegans worms from larval to adult stages. Further, we show that the metabolic output is significantly lower in long-lived C. elegans daf-2 mutants. These demonstrations clearly highlight the broad potential of this tool for studying the role of metabolism in disease, development and aging of small model organisms and single cells.


Assuntos
Caenorhabditis elegans/metabolismo , Calorimetria/métodos , Análise de Célula Única/métodos , Temperatura , Animais , Metabolismo Basal/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calorimetria/instrumentação , Metabolismo Energético/genética , Humanos , Larva/citologia , Larva/genética , Larva/metabolismo , Longevidade/genética , Modelos Animais , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única/instrumentação , Condutividade Térmica
10.
Science ; 369(6502): 423-426, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32499398

RESUMO

Hot carriers in plasmonic nanostructures, generated via plasmon decay, play key roles in applications such as photocatalysis and in photodetectors that circumvent bandgap limitations. However, direct experimental quantification of steady-state energy distributions of hot carriers in nanostructures has so far been lacking. We present transport measurements from single-molecule junctions, created by trapping suitably chosen single molecules between an ultrathin gold film supporting surface plasmon polaritons and a scanning probe tip, that can provide quantification of plasmonic hot-carrier distributions. Our results show that Landau damping is the dominant physical mechanism of hot-carrier generation in nanoscale systems with strong confinement. The technique developed in this work will enable quantification of plasmonic hot-carrier distributions in nanophotonic and plasmonic devices.

11.
Nat Nanotechnol ; 15(2): 99-104, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31873289

RESUMO

Control of thermal transport at the nanoscale is of great current interest for creating novel thermal logic and energy conversion devices. Recent experimental studies have demonstrated that radiative heat transfer between macroscopic objects separated by nanogaps, or between nanostructures located in the far-field of each other, can exceed the blackbody limit. Here, we show that the radiative heat transfer between two coplanar SiN membranes can be modulated by factors as large as five by bringing a third planar object into close proximity of the membranes. Numerical modelling reveals that this modulation is due to a modification of guided modes (supported in the SiN nanomembranes) by evanescent interactions with the third object. This multi-body effect could offer an efficient pathway for active control of heat currents at the nanoscale.

12.
Nature ; 572(7771): 628-633, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31315129

RESUMO

Single-molecule junctions have been extensively used to probe properties as diverse as electrical conduction1-3, light emission4, thermoelectric energy conversion5,6, quantum interference7,8, heat dissipation9,10 and electronic noise11 at atomic and molecular scales. However, a key quantity of current interest-the thermal conductance of single-molecule junctions-has not yet been directly experimentally determined, owing to the challenge of detecting minute heat currents at the picowatt level. Here we show that picowatt-resolution scanning probes previously developed to study the thermal conductance of single-metal-atom junctions12, when used in conjunction with a time-averaging measurement scheme to increase the signal-to-noise ratio, also allow quantification of the much lower thermal conductance of single-molecule junctions. Our experiments on prototypical Au-alkanedithiol-Au junctions containing two to ten carbon atoms confirm that thermal conductance is to a first approximation independent of molecular length, consistent with detailed ab initio simulations. We anticipate that our approach will enable systematic exploration of thermal transport in many other one-dimensional systems, such as short molecules and polymer chains, for which computational predictions of thermal conductance13-16 have remained experimentally inaccessible.

13.
Nature ; 567(7748): E12, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30837739

RESUMO

We would like to correct the sentence in our Letter "However, both our detailed computational analysis (see Supplementary Fig. 2) and past computations13-15 suggest that such enhancements are not anticipated for metallic spheres, and very small increases (by a factor of a few) may be expected for dielectric spheres or metallic cylinders." The work of ref. 13 is not limited to the structures described in this statement but also presents a computational study of radiative heat transfer between rectangular dielectric membranes that is consistent with our experimental and computational analysis, and supports our findings that the blackbody limit can be overcome in the far-field. See accompanying Amendment. The original Letter has not been corrected online.

14.
Nature ; 566(7743): 239-244, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760913

RESUMO

Photonic cooling of matter has enabled both access to unexplored states of matter, such as Bose-Einstein condensates, and novel approaches to solid-state refrigeration1-3. Critical to these photonic cooling approaches is the use of low-entropy coherent radiation from lasers, which makes the cooling process thermodynamically feasible4-6. Recent theoretical work7-9 has suggested that photonic solid-state cooling may be accomplished by tuning the chemical potential of photons without using coherent laser radiation, but such cooling has not been experimentally realized. Here we report an experimental demonstration of photonic cooling without laser light using a custom-fabricated nanocalorimetric device and a photodiode. We show that when they are in each other's near-field-that is, when the size of the vacuum gap between the planar surfaces of the calorimetric device and a reverse-biased photodiode is reduced to tens of nanometres-solid-state cooling of the calorimetric device can be accomplished via a combination of photon tunnelling, which enhances the transport of photons across nanoscale gaps, and suppression of photon emission from the photodiode due to a change in the chemical potential of the photons under an applied reverse bias. This demonstration of active nanophotonic cooling-without the use of coherent laser radiation-lays the experimental foundation for systematic exploration of nanoscale photonics and optoelectronics for solid-state refrigeration and on-chip device cooling.

15.
Sci Rep ; 8(1): 14452, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262912

RESUMO

Significant recent evidence suggests that metabolism is intricately linked to the regulation and dysfunction of complex cellular and physiological responses ranging from altered metabolic programs in cancers and aging to circadian rhythms and molecular clocks. While the metabolic pathways and their fundamental control mechanisms are well established, the precise cellular mechanisms underpinning, for example, enzymatic pathway control, substrate preferences or metabolic rates, remain far less certain. Comprehensive, continuous metabolic studies on model organisms, such as the fruit fly Drosophila melanogaster, may provide a critical tool for deciphering these complex physiological responses. Here, we describe the development of a high-resolution calorimeter, which combines sensitive thermometry with optical imaging to concurrently perform measurements of the metabolic rate of ten individual flies, in real-time, with ~100 nW resolution. Using this calorimeter we have measured the mass-specific metabolic rates of flies of different genotypes, ages, and flies fed with different diets. This powerful new approach enables systematic studies of the metabolic regulation related to cellular and physiological function and disease mechanisms.


Assuntos
Calorimetria/métodos , Ritmo Circadiano , Imagem Óptica/métodos , Termometria/métodos , Animais , Calorimetria/instrumentação , Drosophila melanogaster , Imagem Óptica/instrumentação , Termometria/instrumentação
16.
Nature ; 561(7722): 216-221, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177825

RESUMO

Radiative heat transfer (RHT) has a central role in entropy generation and energy transfer at length scales ranging from nanometres to light years1. The blackbody limit2, as established in Max Planck's theory of RHT, provides a convenient metric for quantifying rates of RHT because it represents the maximum possible rate of RHT between macroscopic objects in the far field-that is, at separations greater than Wien's wavelength3. Recent experimental work has verified the feasibility of overcoming the blackbody limit in the near field4-7, but heat-transfer rates exceeding the blackbody limit have not previously been demonstrated in the far field. Here we use custom-fabricated calorimetric nanostructures with embedded thermometers to show that RHT between planar membranes with sub-wavelength dimensions can exceed the blackbody limit in the far field by more than two orders of magnitude. The heat-transfer rates that we observe are in good agreement with calculations based on fluctuational electrodynamics. These findings may be directly relevant to various fields, such as energy conversion, atmospheric sciences and astrophysics, in which RHT is important.

17.
Nano Lett ; 18(9): 5666-5672, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084643

RESUMO

Molecular junctions offer unique opportunities for controlling charge transport on the atomic scale and for studying energy conversion. For example, quantum interference effects in molecular junctions have been proposed as an avenue for highly efficient thermoelectric power conversion at room temperature. Toward this goal, we investigated the effect of quantum interference on the thermoelectric properties of molecular junctions. Specifically, we employed oligo(phenylene ethynylene) (OPE) derivatives with a para-connected central phenyl ring ( para-OPE3) and meta-connected central ring ( meta-OPE3), which both covalently bind to gold via sulfur anchoring atoms located at their ends. In agreement with predictions from ab initio modeling, our experiments on both single molecules and monolayers show that meta-OPE3 junctions, which are expected to exhibit destructive interference effects, yield a higher thermopower (with ∼20 µV/K) compared with para-OPE3 (with ∼10 µV/K). Our results show that quantum interference effects can indeed be employed to enhance the thermoelectric properties of molecular junctions.

19.
Nat Nanotechnol ; 13(9): 806-811, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29915273

RESUMO

Conversion of heat to electricity via solid-state devices is of great interest and has led to intense research of thermoelectric materials1,2. Alternative approaches for solid-state heat-to-electricity conversion include thermophotovoltaic (TPV) systems where photons from a hot emitter traverse a vacuum gap and are absorbed by a photovoltaic (PV) cell to generate electrical power. In principle, such systems may also achieve higher efficiencies and offer more versatility in use. However, the typical temperature of the hot emitter remains too low (<1,000 K) to achieve a sufficient photon flux to the PV cell, limiting practical applications. Theoretical proposals3-12 suggest that near-field (NF) effects13-18 that arise in nanoscale gaps may be leveraged to increase the photon flux to the PV cell and significantly enhance the power output. Here, we describe functional NFTPV devices consisting of a microfabricated system and a custom-built nanopositioner and demonstrate an ~40-fold enhancement in the power output at nominally 60 nm gaps relative to the far field. We systematically characterize this enhancement over a range of gap sizes and emitter temperatures, and for PV cells with two different bandgap energies. We anticipate that this technology, once optimized, will be viable for waste heat recovery applications.

20.
ACS Nano ; 12(6): 5774-5779, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29790344

RESUMO

In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO2 surfaces. Specifically, we show that the metal-insulator transition of VO2 makes it possible to achieve large differences in the heat flow between Si and VO2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at ∼140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...