Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Bioeng ; 12(4): 311-325, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31719917

RESUMO

INTRODUCTION: The goal of this study was to investigate how concurrent shear stress and tensile strain affect endothelial cell biomechanical responses. METHODS: Human coronary artery endothelial cells were exposed to concurrent pulsatile shear stress and cyclic tensile strain in a programmable shearing and stretching device. Three shear stress-tensile strain conditions were used: (1) pulsatile shear stress at 1 Pa and cyclic tensile strain at 7%, simulating normal stress/strain conditions in a healthy coronary artery; (2) shear stress at 3.7 Pa and tensile strain at 3%, simulating pathological stress/strain conditions near a stenosis; (3) shear stress at 0.7 Pa and tensile strain at 5%, simulating pathological stress/strain conditions in a recirculation zone. Cell morphology was quantified using immunofluorescence microscopy. Cell surface PECAM-1 phosphorylation, ICAM-1 expression, ERK1/2 and NF-κB activation were measured using ELISA or Western blot. RESULTS: Simultaneous stimulation from pulsatile shear stress and cyclic tensile strain induced a significant increase in cell area, compared to that induced by shear stress or tensile strain alone. The combined stimulation caused significant increases in PECAM-1 phosphorylation. The combined stimulation also significantly enhanced EC surface ICAM-1 expression (compared to that under shear stress alone) and transcriptional factor NF-κB activation (compared to that under control conditions). CONCLUSION: Pulsatile shear stress and cyclic tensile strain could induce increased but not synergistic effect on endothelial cell morphology or activation. The combined mechanical stimulation can be relayed from cell membrane to nucleus. Therefore, to better understand how mechanical conditions affect endothelial cell mechanotransduction and cardiovascular disease development, both shear stress and tensile strain need to be considered.

2.
J Biomech Eng ; 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30029208

RESUMO

A fluid structure interaction model of a left anterior descending (LAD) coronary artery was developed, incorporating transient blood flow, cyclic bending motion of the artery, and myocardial contraction. The 3D geometry was constructed based on a patient's computed tomography angiography data. To simulate disease conditions, a plaque was placed within the LAD to create a 70% stenosis. The bending motion of the blood vessel was prescribed based on the LAD spatial information. The pressure induced by myocardial contraction was applied to the outside of the blood vessel wall. The fluid domain was solved using the Navier-Stokes equations. The arterial wall was defined as a nonlinear elastic, anisotropic, and incompressible material, and the mechanical behavior was described using the modified hyper-elastic Mooney-Rivlin model. The fluid (blood) and solid (vascular wall) domains were fully coupled. The simulation results demonstrated that besides vessel bending/stretching motion, myocardial contraction had a significant effect on local hemodynamics and vascular all stress/strain distribution. It not only transiently increased blood flow velocity and fluid wall shear stress, but also changed shear stress patterns. The presence of the plaque significantly reduced vascular wall tensile strain. Compared to the coronary artery models developed previously, the current model had improved physiological relevance.

3.
Thromb Res ; 150: 44-50, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28013181

RESUMO

INTRODUCTION: Both vascular endothelial cells and platelets are sensitive to blood flow induced shear stress. We have recently reported that platelet-endothelial cell interaction could greatly affect platelet activation under flow. In the present study, we aimed to investigate how platelet-endothelial cell interaction affected endothelial cell inflammatory responses under flow. MATERIALS AND METHODS: Human coronary artery endothelial cells were exposed to normal or low pulsatile shear stress with or without the presence of platelets. Following shear exposure, endothelial cell ICAM-1 expression was measured using ELISA, Western blot and PCR; cell surface PECAM-1 expression/phosphorylation was measured using ELISA. Platelet adhesion to endothelial cells was quantified using immunofluorescence microscopy. To determine the role of PECAM-1 in platelet-endothelial cell interaction, endothelial cell PECAM-1 expression was suppressed using siRNA. RESULTS: Pathological low shear stress induced a significant increase in endothelial cell ICAM-1 expression, at both protein and mRNA levels. Platelet adhesion to endothelial cells increased significantly under low shear stress, co-localizing with PECAM-1 at endothelial cell junctions. The presence of platelets inhibited low shear stress-induced ICAM-1 upregulation. When endothelial cell PECAM-1 expression was suppressed, platelet adhesion to endothelial cells under low shear stress decreased significantly; endothelial cell ICAM-1 expression was not affected by shear stress, with or without platelets. CONCLUSIONS: These results suggested that PECAM-1 could mediate platelet adhesion to endothelial cells under shear stress. Platelets binding to endothelial cells interfered with endothelial cell mechanotransduction through PECAM-1, affecting endothelial cell inflammatory responses towards pathological shear flow.


Assuntos
Plaquetas/citologia , Células Endoteliais/citologia , Adesividade Plaquetária , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Mecanotransdução Celular , Óxido Nítrico/metabolismo , Fosforilação , Estresse Mecânico
4.
J Biomech Eng ; 138(3): 4032550, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26810848

RESUMO

Endothelial cell (EC) morphology and functions can be highly impacted by the mechanical stresses that the cells experience in vivo. In most areas in the vasculature, ECs are continuously exposed to unsteady blood flow-induced shear stress and vasodilation-contraction-induced tensile stress/strain simultaneously. Investigations on how ECs respond to combined shear stress and tensile strain will help us to better understand how an altered mechanical environment affects EC mechanotransduction, dysfunction, and associated cardiovascular disease development. In the present study, a programmable shearing and stretching device that can apply dynamic fluid shear stress and cyclic tensile strain simultaneously to cultured ECs was developed. Flow and stress/strain conditions in the device were simulated using a fluid structure interaction (FSI) model. To characterize the performance of this device and the effect of combined shear stress-tensile strain on EC morphology, human coronary artery ECs (HCAECs) were exposed to concurrent shear stress and cyclic tensile strain in the device. Changes in EC morphology were evaluated through cell elongation, cell alignment, and cell junctional actin accumulation. Results obtained from the numerical simulation indicated that in the "in-plane" area of the device, both fluid shear stress and biaxial tensile strain were uniform. Results obtained from the in vitro experiments demonstrated that shear stress, alone or combined with cyclic tensile strain, induced significant cell elongation. While biaxial tensile strain alone did not induce any appreciable change in EC elongation. Fluid shear stress and cyclic tensile strain had different effects on EC actin filament alignment and accumulation. By combining various fluid shear stress and cyclic tensile strain conditions, this device can provide a physiologically relevant mechanical environment to study EC responses to physiological and pathological mechanical stimulation.


Assuntos
Forma Celular , Células Endoteliais/citologia , Hidrodinâmica , Teste de Materiais/instrumentação , Estresse Mecânico , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Humanos , Junções Intercelulares/metabolismo , Modelos Biológicos , Resistência ao Cisalhamento , Resistência à Tração , Vácuo
5.
Lasers Surg Med ; 47(4): 289-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25872487

RESUMO

BACKGROUND AND OBJECTIVES: Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. MATERIALS AND METHODS: Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). RESULTS: HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. CONCLUSIONS: Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Glioma/patologia , Glioma/cirurgia , Microscopia/métodos , Ácido Aminolevulínico , Humanos , Cuidados Intraoperatórios , Neuronavegação , Procedimentos Neurocirúrgicos , Fármacos Fotossensibilizantes
6.
Biomed Opt Express ; 5(9): 2883-95, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25401005

RESUMO

The early detection and biological investigation of esophageal cancer would benefit from the development of advanced imaging techniques to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and the investigation of cancer progression through the sensitive and multiplexed phenotyping of cell-surface biomarkers. Here, a miniature endoscope featuring rotational scanning and axial pull back has been developed for 2D spectral imaging of SERS NPs topically applied on the lumenal surface of the rat esophagus. Raman signals from low-pM concentrations of SERS NP mixtures are demultiplexed in real time to accurately calculate the concentration and ratio of the NPs. Ex vivo and in vivo experiments demonstrate the feasibility of topical application and imaging of multiplexed SERS NPs along the entire length of the rat esophagus.

7.
Technology (Singap World Sci) ; 2(2): 118-132, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25045721

RESUMO

Multiplexed surface-enhanced Raman scattering (SERS) nanoparticles (NPs) offer the potential for rapid molecular phenotyping of tissues, thereby enabling accurate disease detection as well as patient stratification to guide personalized therapies or to monitor treatment outcomes. The clinical success of molecular diagnostics based on SERS NPs would be facilitated by the ability to accurately identify tissue biomarkers under time-constrained staining and detection conditions with a portable device. In vitro, ex vivo and in vivo experiments were performed to optimize the technology and protocols for the rapid detection (0.1-s integration time) of multiple cell-surface biomarkers with a miniature fiber-optic spectral-detection probe following a brief (5 min) topical application of SERS NPs on tissues. Furthermore, we demonstrate that the simultaneous detection and ratiometric quantification of targeted and nontargeted NPs allows for an unambiguous assessment of molecular expression that is insensitive to nonspecific variations in NP concentrations.

8.
Neurosurgery ; 75(1): 61-71, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24618801

RESUMO

Mounting evidence suggests that a more extensive surgical resection is associated with an improved life expectancy for both low-grade and high-grade glioma patients. However, radiographically complete resections are not often achieved in many cases because of the lack of sensitivity and specificity of current neurosurgical guidance techniques at the margins of diffuse infiltrative gliomas. Intraoperative fluorescence imaging offers the potential to improve the extent of resection and to investigate the possible benefits of resecting beyond the radiographic margins. Here, we provide a review of wide-field and high-resolution fluorescence-imaging strategies that are being developed for neurosurgical guidance, with a focus on emerging imaging technologies and clinically viable contrast agents. The strengths and weaknesses of these approaches will be discussed, as well as issues that are being addressed to translate these technologies into the standard of care.


Assuntos
Neoplasias Encefálicas/cirurgia , Meios de Contraste , Glioma/cirurgia , Procedimentos Neurocirúrgicos/tendências , Cirurgia Assistida por Computador/tendências , Diagnóstico por Imagem/tendências , Fluorescência , Humanos , Procedimentos Neurocirúrgicos/métodos , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA