Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500807

RESUMO

The demand for metallic nanoparticles synthesized using green methods has increased due to their various therapeutic and clinical applications, and plant biotechnology may be a potential resource facilitating sustainable methods of AgNPs synthesis. In this study, we evaluate the capacity of extracts from Randia aculeata cell suspension culture (CSC) in the synthesis of AgNPs at different pH values, and their activity against pathogenic bacteria and cancer cells was evaluated. Using aqueous CSC extracts, AgNPs were synthesized with 10% (w/v) of fresh biomass and AgNO3 (1 mM) at a ratio of 1:1 for 24 h of incubation and constant agitation. UV-vis analysis showed a high concentration of AgNPs as the pH increased, and TEM analysis showed polydisperse nanoparticles with sizes from 10 to 90 nm. Moreover, CSC extracts produce reducing agents such as phenolic compounds (162.2 ± 27.9 mg gallic acid equivalent/100 g biomass) and flavonoids (122.07 ± 8.2 mg quercetin equivalent/100 g biomass). Notably, AgNPs had strong activity against E. coli, S. pyogenes, P. aeruginosa, S. aureus, and S. typhimurium, mainly with AgNPs at pH 6 (MIC: 1.6 to 3.9 µg/mL). AgNPs at pH 6 and 10 had a high antiproliferative effect on cancer cells (IC50 < 5.7 µg/mL). Therefore, the use of cell suspension cultures may be a sustainable option for the green synthesis of AgNPs.

2.
Plants (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672370

RESUMO

Eysenhardtia platycarpa (Fabaceae) is a medicinal plant used in Mexico. Biotechnological studies of its use are lacking. The objective of this work was to establish a cell suspension culture (CSC) of E. platycarpa, determine the phytochemical constituents by spectrophotometric and gas chromatography‒mass spectrometry (GC‒MS) methods, evaluate its antifungal activity, and compare them with the intact plant. Friable callus and CSC were established with 2 mg/L 1-naphthaleneacetic acid plus 0.1 mg/L kinetin. The highest total phenolics of CSC was 15.6 mg gallic acid equivalents (GAE)/g dry weight and the total flavonoids content ranged from 56.2 to 104.1 µg quercetin equivalents (QE)/g dry weight. The GC‒MS analysis showed that the dichloromethane extracts of CSC, sapwood, and heartwood have a high amount of hexadecanoic acid (22.3-35.3%) and steroids (13.5-14.7%). Heartwood and sapwood defatted hexane extracts have the highest amount of stigmasterol (~23.4%) and ß-sitosterol (~43%), and leaf extracts presented ß-amyrin (16.3%). Methanolic leaf extracts showed mostly sugars and some polyols, mainly D-pinitol (74.3%). Compared with the intact plant, dichloromethane and fatty hexane extracts of CSC exhibited percentages of inhibition higher for Sclerotium cepivorum: 71.5% and 62.0%, respectively. The maximum inhibition for Rhizoctonia solani was with fatty hexane extracts of the sapwood (51.4%). Our study suggests that CSC extracts could be used as a possible complementary alternative to synthetic fungicides.

3.
Bioengineering (Basel) ; 6(4)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861111

RESUMO

Tequila agave bagasse (TAB) is the fibrous waste from the Tequila production process. It is generated in large amounts and its disposal is an environmental problem. Its use as a source of fermentable sugars for biotechnological processes is of interest; thus, it was investigated for the production of polyhydroxybutyrate (PHB) by the xylose-assimilating bacteria Burkholderia sacchari. First, it was chemically hydrolyzed, yielding 20.6 g·L-1 of reducing sugars, with xylose and glucose as the main components (7:3 ratio). Next, the effect of hydrolysis by-products on B. sacchari growth was evaluated. Phenolic compounds showed the highest toxicity (> 60% of growth inhibition). Then, detoxification methods (resins, activated charcoal, laccases) were tested to remove the growth inhibitory compounds from the TAB hydrolysate (TABH). The highest removal percentage (92%) was achieved using activated charcoal (50 g·L-1, pH 2, 4 h). Finally, detoxified TABH was used as the carbon source for the production of PHB in a two-step batch culture, reaching a biomass production of 11.3 g·L-1 and a PHB accumulation of 24 g PHB g-1 dry cell (after 122 h of culture). The polymer structure resulted in a homopolymer of 3-hydroxybutyric acid. It is concluded that the TAB could be hydrolyzed and valorized as a carbon source for producing PHB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...