Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Insects ; 13(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447755

RESUMO

Miniature inverted-repeat transposable elements MITEs are ubiquitous, non-autonomous class II transposable elements. The moths, Helicoverpa armigera and Helicoverpa zea, are recognized as the two most serious pest species within the genus. Moreover, these pests have the ability to develop insecticide resistance. In the present study, we conducted a genome-wide analysis of MITEs present in H. armigera and H. zea genomes using the bioinformatics tool, MITE tracker. Overall, 3570 and 7405 MITE sequences were identified in H. armigera and H. zea genomes, respectively. Comparative analysis of identified MITE sequences in the two genomes led to the identification of 18 families, comprising 140 MITE members in H. armigera and 161 MITE members in H. zea. Based on target site duplication (TSD) sequences, the identified families were classified into three superfamilies (PIF/harbinger, Tc1/mariner and CACTA). Copy numbers varied from 6 to 469 for each MITE family. Finally, the analysis of MITE insertion sites in defensome genes showed intronic insertions of 11 MITEs in the cytochrome P450, ATP-binding cassette transporter (ABC) and esterase genes in H. armigera whereas for H. zea, only one MITE was retrieved in the ABC-C2 gene. These insertions could thus be involved in the insecticide resistance observed in these pests.

2.
Genome ; 65(3): 165-181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780303

RESUMO

Mariner-like elements (MLEs) are class II transposons belonging to the Tc1-mariner family that have successfully invaded many insect genomes. In the current study, the availability of the Hessian fly, Mayetiola destructor, genome has enabled us to perform in silico analysis of MLEs using a previously described mariner element (Desmar1) belonging to the mauritiana subfamily. Eighteen mauritiana-like elements were detected and clustered into three main groups: Desmar1-like, MauCons1, and MauCons2. Subsequently, in vitro analysis was carried out to investigate mauritiana-like elements in M. destructor as well as in Mayetiola hordei using primers designed from TIRs of previously identified MLEs. PCR amplifications were successful, and a total of 12 and 17 mauritiana-like elements were detected in M. destructor and M. hordei, respectively. Sequence analyses of mauritiana-like elements obtained in silico and in vitro have shown that MauCons1 and MauCons2 elements share low similarity with Desmar1 ranging from 50% to 55%, suggesting that different groups under the mauritiana subfamily have invaded the genomes of M. destructor and M. hordei. These groups were likely inherited by vertical transmission, which subsequently underwent different evolutionary histories. This work describes new mauritiana-like elements in M. destructor that are distinct from the previously discovered Desmar1 and provides the first evidence of MLEs belonging to the mauritiana subfamily in M. hordei.


Assuntos
Dípteros , Animais , Primers do DNA , Elementos de DNA Transponíveis , Dípteros/genética , Genoma de Inseto , Filogenia
3.
Insects ; 11(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322432

RESUMO

The cotton bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is an important pest of many crops that has developed resistance to almost all groups of insecticides used for its management. Insecticide resistance was often related to Transposable Element (TE) insertions near specific genes. In the present study, we deeply retrieve and annotate TEs in the H. armigera genome using the Pipeline to Retrieve and Annotate Transposable Elements, PiRATE. The results have shown that the TE library consists of 8521 sequences representing 236,132 TE copies, including 3133 Full-Length Copies (FLC), covering 12.86% of the H. armigera genome. These TEs were classified as 46.71% Class I and 53.29% Class II elements. Among Class I elements, Short and Long Interspersed Nuclear Elements (SINEs and LINEs) are the main families, representing 21.13% and 19.49% of the total TEs, respectively. Long Terminal Repeat (LTR) and Dictyostelium transposable element (DIRS) are less represented, with 5.55% and 0.53%, respectively. Class II elements are mainly Miniature Inverted Transposable Elements (MITEs) (49.11%), then Terminal Inverted Repeats (TIRs) (4.09%). Superfamilies of Class II elements, i.e., Transib, P elements, CACTA, Mutator, PIF-harbinger, Helitron, Maverick, Crypton and Merlin, were less represented, accounting for only 1.96% of total TEs. In addition, we highlighted TE insertions in insecticide resistance genes and we successfully identified nine TE insertions belonging to RTE, R2, CACTA, Mariner and hAT superfamilies. These insertions are hosted in genes encoding cytochrome P450 (CyP450), glutathione S-transferase (GST), and ATP-binding cassette (ABC) transporter belonging to the G and C1 family members. These insertions could therefore be involved in insecticide resistance observed in this pest.

4.
3 Biotech ; 8(11): 453, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30370194

RESUMO

In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance (R) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS-LRR (53.1%), CC-NBS-LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and Brachypodium. 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA-R gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.

5.
BMC Genomics ; 18(1): 494, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662628

RESUMO

BACKGROUND: Although transposons have been identified in almost all organisms, genome-wide information on mariner elements in Aphididae remains unknown. Genomes of Acyrthosiphon pisum, Diuraphis noxia and Myzus persicae belonging to the Macrosiphini tribe, actually available in databases, have been investigated. RESULTS: A total of 22 lineages were identified. Classification and phylogenetic analysis indicated that they were subdivided into three monophyletic groups, each of them containing at least one putative complete sequence, and several non-autonomous sublineages corresponding to Miniature Inverted-Repeat Transposable Elements (MITE), probably generated by internal deletions. A high proportion of truncated and dead copies was also detected. The three clusters can be defined from their catalytic site: (i) mariner DD34D, including three subgroups of the irritans subfamily (Macrosiphinimar, Batmar-like elements and Dnomar-like elements); (ii) rosa DD41D, found in A. pisum and D. noxia; (iii) a new clade which differs from rosa through long TIRs and thus designated LTIR-like elements. Based on its catalytic domain, this new clade is subdivided into DD40D and DD41D subgroups. Compared to other Tc1/mariner superfamily sequences, rosa DD41D and LTIR DD40-41D seem more related to maT DD37D family. CONCLUSION: Overall, our results reveal three clades belonging to the irritans subfamily, rosa and new LTIR-like elements. Data on structure and specific distribution of these transposable elements in the Macrosiphini tribe contribute to the understanding of their evolutionary history and to that of their hosts.


Assuntos
Afídeos/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Variação Genética , Genoma de Inseto/genética , Animais , Genômica , Proteínas de Insetos/genética , Filogenia
6.
Braz. arch. biol. technol ; 59: e16160450, 2016. tab
Artigo em Inglês | LILACS | ID: biblio-951371

RESUMO

ABSTRACT Computational investigation of a set of publicly available plant microRNAs revealed 19 barley- and other plants-encoded miRNAs and their near-complement reverse sequences (miRNA*) that have potential to bind all B/CYDV open reading frames (ORFs) except ORF0 and ORF6. These miRNAs/miRNAs*, their binding positions and targets are discussed in the context of biological protection of cereals against B/CYDV, based on antiviral silencing.

7.
Mol Genet Genomics ; 290(1): 257-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25231182

RESUMO

Host resistance is the most economical, effective and ecologically sustainable method of controlling diseases in crop plants. In bread wheat, despite the high number of resistance loci that have been cataloged to date, only few have been cloned, underlying the need for genomics-guided investigations capable of providing a prompt and acute knowledge on the identity of effective resistance genes that can be used in breeding programs. Proteins with a nucleotide-binding site (NBS) encoded by the major plant disease resistance (R) genes play an important role in the responses of plants to various pathogens. In this study, a comprehensive analysis of NBS-encoding genes within the whole wheat genome was performed, and the genome scale characterization of this gene family was established. From the recently published wheat genome sequence, we used a data mining and automatic prediction pipeline to identify 580 complete ORF candidate NBS-encoding genes and 1,099 partial-ORF ones. Among complete gene models, 464 were longer than 200 aa, among them 436 had less than 70 % of sequence identity to each other. This gene models set was deeply characterized. (1) First, we have analyzed domain architecture and identified, in addition to typical domain combinations, the presence of particular domains like signal peptides, zinc fingers, kinases, heavy-metal-associated and WRKY DNA-binding domains. (2) Functional and expression annotation via homology searches in protein and transcript databases, based on sufficient criteria, enabled identifying similar proteins for 60 % of the studied gene models and expression evidence for 13 % of them. (3) Shared orthologous groups were defined using NBS-domain proteins of rice and Brachypodium distachyon. (4) Finally, alignment of the 436 NBS-containing gene models to the full set of scaffolds from the IWGSC's wheat chromosome survey sequence enabled high-stringence anchoring to chromosome arms. The distribution of the R genes was found balanced on the three wheat sub-genomes. In contrast, at chromosome scale, 50 % of members of this gene family were localized on 6 of the 21 wheat chromosomes and ~22 % of them were localized on homeologous group 7. The results of this study provide a detailed analysis of the largest family of plant disease resistance genes in allohexaploid wheat. Some structural traits reported had not been previously identified and the genome-derived data were confronted with those stored in databases outlining the functional specialization of members of this family. The large reservoir of NBS-type genes presented and discussed will, firstly, form an important framework for marker-assisted improvement of resistance in wheat, and, secondly, open up new perspectives for a better understanding of the evolution dynamics of this gene family in grass species and in polyploid systems.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Nucleotídeos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Triticum/genética , Triticum/imunologia , Sítios de Ligação , Cromossomos de Plantas , Sequência Conservada/genética , Mineração de Dados , Modelos Genéticos , Homologia de Sequência de Aminoácidos
8.
Genet Mol Biol ; 37(3): 598-610, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25249784

RESUMO

Proteins containing nucleotide binding sites (NBS) encoded by plant resistance genes play an important role in the response of plants to a wide array of pathogens. In this paper, an in silico search was conducted in order to identify and characterize members of NBS-encoding gene family in the tribe of Triticeae. A final dataset of 199 sequences was obtained by four search methods. Motif analysis confirmed the general structural organization of the NBS domain in cereals, characterized by the presence of the six commonly conserved motifs: P-loop, RNBS-A, Kinase-2, Kinase-3a, RNBS-C and GLPL. We revealed the existence of 11 distinct distribution patterns of these motifs along the NBS domain. Four additional conserved motifs were shown to be significantly present in all 199 sequences. Phylogenetic analyses, based on genetic distance and parsimony, revealed a significant overlap between Triticeae sequences and Coiled coil-Nucleotide binding site-Leucine rich repeat (CNL)-type functional genes from monocotyledons. Furthermore, several Triticeae sequences belonged to clades containing functional homologs from non Triticeae species, which has allowed for these sequences to be functionally assigned. The findings reported, in this study, will provide a strong groundwork for the isolation of candidate R-genes in Triticeae crops and the understanding of their evolution.

9.
Mol Genet Genomics ; 289(4): 599-613, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24638930

RESUMO

In crop improvement, the isolation, cloning and transfer of disease resistance genes (R-genes) is an ultimate goal usually starting from tentative R-gene analogs (RGAs) that are identified on the basis of their structure. For bread wheat, recent advances in genome sequencing are supporting the efforts of wheat geneticists worldwide. Among wheat R-genes, nucleotide-binding site (NBS)-encoding ones represent a major class. In this study, we have used a polymerase chain reaction-based approach to amplify and clone NBS-type RGAs from a bread wheat cultivar, 'Salambo 80.' Four novel complete ORF sequences showing similarities to previously reported R-genes/RGAs were used for in silico analyses. In a first step, where analyses were focused on the NBS domain, these sequences were phylogenetically assigned to two distinct groups: a first group close to leaf rust Lr21 resistance proteins; and a second one similar to cyst nematode resistance proteins. In a second step, sequences were used as initial seeds to walk up and downstream the NBS domain. This procedure enabled identifying 8 loci ranging in size between 2,115 and 7,653 bp. Ab initio gene prediction identified 8 gene models, among which two had complete ORFs. While GenBank survey confirmed the belonging of sequences to two groups, subsequent characterization using IWGSC genomic and proteomic data showed that the 8 gene models, reported in this study, were unique and their loci matched scaffolds on chromosome arms 1AS, 1BS, 4BS and 1DS. The gene model located on 1DS is a pseudo-Lr21 that was shown to have an NBS-LRR domain structure, while the potential association of the RGAs, here reported, is discussed. This study has produced novel R-gene-like loci and models in the wheat genome and provides the first steps toward further elucidation of their role in wheat disease resistance.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Triticum/genética , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/genética , Biblioteca Gênica , Genômica , Dados de Sequência Molecular , Filogenia , Imunidade Vegetal , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência , Triticum/imunologia
12.
Int J Mol Sci ; 13(11): 14446-50, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23203074

RESUMO

Using an enriched library method, seven polymorphic microsatellite loci were isolated from the barley stem gall midge, Mayetiola hordei. Polymorphism at loci was surveyed on 57 individual midges collected on barley in Tunisia. Across loci, polymorphism ranged from two to six alleles per locus. The observed heterozygosity varied between 0.070 and 0.877. Based on the number of alleles detected and the associated levels of heterozygosity, we believe that these loci will prove useful for population genetic studies on M. hordei.


Assuntos
Loci Gênicos , Hordeum/genética , Repetições de Microssatélites/genética , Caules de Planta , Polimorfismo Genético , Alelos , Genótipo , Dados de Sequência Molecular , Motivos de Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...