Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 109(5): 666-681, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608184

RESUMO

The bone regenerative capacity of synthetic calcium phosphates (CaPs) can be enhanced through the enrichment with selected metal trace ions. However, defining the optimal elemental composition required for bone formation is challenging due to many possible concentrations and combinations of these elements. We hypothesized that the ideal elemental composition exists in the inorganic phase of the bone extracellular matrix (ECM). To study our hypothesis, we first obtained natural hydroxyapatite through the calcination of bovine bone, which was then investigated its reactivity with acidic phosphates to produce CaP cements. Bioceramic scaffolds fabricated using these cements were assessed for their composition, properties, and in vivo regenerative performance and compared with controls. We found that natural hydroxyapatite could react with phosphoric acid to produce CaP cements with biomimetic trace metals. These cements present significantly superior in vivo bone regenerative performance compared with cements prepared using synthetic apatite. In summary, this study opens new avenues for further advancements in the field of CaP bone biomaterials by introducing a simple approach to develop biomimetic CaPs. This work also sheds light on the role of the inorganic phase of bone and its composition in defining the regenerative properties of natural bone xenografts.


Assuntos
Biomimética , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Cerâmica/farmacologia , Metais/farmacologia , Oligoelementos/farmacologia , Animais , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Bovinos , Ácido Cítrico/farmacologia , Força Compressiva , Cristalografia por Raios X , Durapatita/química , Durapatita/isolamento & purificação , Feminino , Teste de Materiais , Metais/análise , Metais/uso terapêutico , Ácidos Fosfóricos/farmacologia , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/lesões , Oligoelementos/análise , Oligoelementos/uso terapêutico , Microtomografia por Raio-X
2.
J Prosthodont ; 29(3): 251-260, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782584

RESUMO

PURPOSE: A new type of diazonium-based adhesive has been recently developed by our team to bind dental alloys (Titanium, stainless steel, and cobalt chromium) to dental polymers. Here, we explored the endurance of the resulting adhesive after thermal-cycling and autoclave aging. MATERIALS AND METHODS: Polished samples of titanium (Ti), stainless steel (SS) and cobalt chromium (Co-Cr) were coated with a diazonium-based adhesive. Untreated samples served as controls (n = 12 per each condition). X-ray photoelectron spectroscopy (XPS) was performed to characterize the elemental compositions of the different surfaces. Biocompatibility of the coated alloys was assessed with human gingival fibroblasts (HGF). Inductively coupled plasma (ICP) and total organic carbon (TOC) analyses were used to quantify the ions and organic matters released from the diazonium coated alloys. Endurance of the adhesives was assessed by exposing the samples to autoclaving and thermal-cycling. The tensile strength of the poly(methylmethacrylate) (PMMA)-alloy bond was also tested. RESULTS: Results of mechanical testing demonstrated a higher endurance of the coated CoCr, Ti, and SS compared to the uncoated alloys. The human fibroblasts cultured on the substrates remained alive and metabolically active, and the coatings did not release significant amounts of toxic chemicals in solutions. CONCLUSIONS: The results further support the use of diazonium-based adhesives as new coupling agents for dental applications.


Assuntos
Ligas Dentárias , Cimentos Dentários , Ligas , Ligas de Cromo , Humanos , Teste de Materiais , Propriedades de Superfície , Titânio
3.
Acta Biomater ; 89: 343-358, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30853609

RESUMO

Immunomodulation strategies are believed to improve the integration and clinical performance of synthetic bone substitutes. One potential approach is the modification of biomaterial surface chemistry to mimic bone extracellular matrix (ECM). In this sense, we hypothesized that coating synthetic dicalcium phosphate (DCP) bioceramics with bone ECM proteins would modulate the host immune reactions and improve their regenerative performance. To test this, we evaluated the in vitro proteomic surface interactions and the in vivo performance of ECM-coated bioceramic scaffolds. Our results demonstrated that coating DCP scaffolds with bone extracts, specifically those containing calcium-binding proteins, dramatically modulated their interaction with plasma proteins in vitro, especially those relating to the innate immune response. In vivo, we observed an attenuated inflammatory response against the bioceramic scaffolds and enhanced peri-scaffold new bone formation supported by the increased osteoblastogenesis and reduced osteoclastogenesis. Furthermore, the bone extract rich in calcium-binding proteins can be 3D-printed to produce customized hydrogels with improved regeneration capabilities. In summary, bone extracts containing calcium-binding proteins can enhance the integration of synthetic biomaterials and improve their ability to regenerate bone probably by modulating the host immune reaction. This finding helps understand how bone allografts regenerate bone and opens the door for new advances in tissue engineering and bone regeneration. STATEMENT OF SIGNIFICANCE: Foreign-body reaction is an important determinant of in vivo biomaterial integration, as an undesired host immune response can compromise the performance of an implanted biomaterial. For this reason, applying immunomodulation strategies to enhance biomaterial engraftment is of great interest in the field of regenerative medicine. In this article, we illustrated that coating dicalcium phosphate bioceramic scaffolds with bone-ECM extracts, especially those rich in calcium-binding proteins, is a promising approach to improve their surface proteomic interactions and modulate the immune responses towards such biomaterials in a way that improves their bone regeneration performance. Collectively, the results of this study may provide a conceivable explanation for the mechanisms involved in presenting the excellent regenerative efficacy of natural bone grafts.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos , Fosfatos de Cálcio/farmacologia , Cerâmica , Misturas Complexas/farmacologia , Hidrogéis/farmacologia , Fatores Imunológicos , Osteogênese/efeitos dos fármacos , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Osso e Ossos/química , Osso e Ossos/fisiologia , Cerâmica/química , Cerâmica/farmacologia , Misturas Complexas/química , Feminino , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Ratos
4.
Tissue Eng Part A ; 23(23-24): 1436-1451, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28562183

RESUMO

The gold standard material for bone regeneration is still autologous bone, a mesenchymal tissue that consists mainly of extracellular matrix (ECM) (90% v/v) and little cellular content (10% v/v). However, the fact that decellularized allogenic bone grafts often present a clinical performance comparable to autologous bone grafts demonstrates the crucial role of ECM in bone regeneration. For long, the mechanism by which bone allografts function was not clear, but recent research has unveiled many unique characteristics of ECM that seem to play a key role in tissue regeneration. This is further confirmed by the fact that synthetic biomaterials with composition and properties resembling bone ECM present excellent bone regeneration properties. In this context, ECM molecules such as glycosaminoglycans (GAGs) and self-assembly peptides (SAPs) can improve the performance of bone regeneration biomaterials. Moreover, decellularized ECM derived either from native tissues such as bone, cartilage, skin, and tooth germs or from cells such as osteoblasts, chondrocytes, and stem cells has shown promising results in bone regeneration applications. Understanding the role of ECM in bone regeneration is crucial for the development of the next generation of biomaterials for bone tissue engineering. In this sense, this review addresses the state-of-the-art on this subject matter.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Matriz Extracelular/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...