Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 169: 104129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704126

RESUMO

The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.


Assuntos
Receptores Odorantes , Gorgulhos , Animais , Gorgulhos/metabolismo , Gorgulhos/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Compostos Orgânicos Voláteis/metabolismo , Masculino , Filogenia , Feminino , Arecaceae/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Antenas de Artrópodes/metabolismo , Ésteres/metabolismo
2.
Nat Microbiol ; 8(11): 2154-2169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884813

RESUMO

Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Malária/parasitologia , Regulação da Expressão Gênica , Plasmodium falciparum/genética
3.
Genome Med ; 15(1): 54, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37475040

RESUMO

BACKGROUND: The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. METHODS: Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. RESULTS: We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. CONCLUSIONS: Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development.


Assuntos
COVID-19 , COVID-19/imunologia , Inflamação/imunologia , Humanos , Células HEK293 , SARS-CoV-2/genética , Mutação , Índice de Gravidade de Doença
4.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293082

RESUMO

Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.

5.
mSphere ; 8(2): e0052622, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36847534

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that can play critical roles in regulating various cellular processes, including during many parasitic infections. Here, we report a regulatory role for miR-34c-3p in cAMP-independent regulation of host cell protein kinase A (PKA) activity in Theileria annulata-infected bovine leukocytes. We identified prkar2b (cAMP-dependent protein kinase A type II-beta regulatory subunit) as a novel miR-34c-3p target gene and demonstrate how infection-induced upregulation of miR-34c-3p repressed PRKAR2B expression to increase PKA activity. As a result, the disseminating tumorlike phenotype of T. annulata-transformed macrophages is enhanced. Finally, we extend our observations to Plasmodium falciparum-parasitized red blood cells, where infection-induced augmentation in miR-34c-3p levels led to a drop in the amount of prkar2b mRNA and increased PKA activity. Collectively, our findings represent a novel cAMP-independent way of regulating host cell PKA activity in infections by Theileria and Plasmodium parasites. IMPORTANCE Small microRNA levels are altered in many diseases, including those caused by parasites. Here, we describe how infection by two important animal and human parasites, Theileria annulata and Plasmodium falciparum, induce changes in infected host cell miR-34c-3p levels to regulate host cell PKA kinase activity by targeting mammalian prkar2b. Infection-induced changes in miR-34c-3p levels provide a novel epigenetic mechanism for regulating host cell PKA activity independent of fluxes in cAMP to both aggravate tumor dissemination and improve parasite fitness.


Assuntos
MicroRNAs , Theileria annulata , Humanos , Bovinos , Animais , Theileria annulata/genética , Theileria annulata/metabolismo , MicroRNAs/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mamíferos , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico
6.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36611193

RESUMO

High-quality genome assemblies are characterized by high-sequence contiguity, completeness, and a low error rate, thus providing the basis for a wide array of studies focusing on natural species ecology, conservation, evolution, and population genomics. To provide this valuable resource for conservation projects and comparative genomics studies on gyrfalcon (Falco rusticolus), we sequenced and assembled the genome of this species using third-generation sequencing strategies and optical maps. Here, we describe a highly contiguous and complete genome assembly comprising 20 scaffolds and 13 contigs with a total size of 1.193 Gbp, including 8,064 complete Benchmarking Universal Single-Copy Orthologs (BUSCOs) of the total 8,338 BUSCO groups present in the library aves_odb10. Of these BUSCO genes, 96.7% were complete, 96.1% were present as a single copy, and 0.6% were duplicated. Furthermore, 0.8% of BUSCO genes were fragmented and 2.5% (210) were missing. A de novo search for transposable elements (TEs) identified 5,716 TEs that masked 7.61% of the F. rusticolus genome assembly when combined with publicly available TE collections. Long interspersed nuclear elements, in particular, the element Chicken-repeat 1 (CR1), were the most abundant TEs in the F. rusticolus genome. A de novo first-pass gene annotation was performed using 293,349 PacBio Iso-Seq transcripts and 496,195 transcripts derived from the assembly of 42,429,525 Illumina PE RNA-seq reads. In all, 19,602 putative genes, of which 59.31% were functionally characterized and associated with Gene Ontology terms, were annotated. A comparison of the gyrfalcon genome assembly with the publicly available assemblies of the domestic chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and hummingbird (Calypte anna) revealed several genome rearrangements. In particular, nine putative chromosome fusions were identified in the gyrfalcon genome assembly compared with those in the G. gallus genome assembly. This genome assembly, its annotation for TEs and genes, and the comparative analyses presented, complement and strength the base of high-quality genome assemblies and associated resources available for comparative studies focusing on the evolution, ecology, and conservation of Aves.


Assuntos
Cromossomos , Genômica , Anotação de Sequência Molecular , Elementos de DNA Transponíveis
7.
Sci Rep ; 12(1): 12710, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882887

RESUMO

A fungal metabolite, FR235222, specifically inhibits a histone deacetylase of the apicomplexan parasite Toxoplasma gondii and TgHDAC3 has emerged as a key factor regulating developmental stage transition in this species. Here, we exploited FR235222 to ask if changes in histone acetylation regulate developmental stage transition of Theileria annulata, another apicomplexan species. We found that FR235222 treatment of T. annulata-infected transformed leukocytes induced a proliferation arrest. The blockade in proliferation was due to drug-induced conversion of intracellular schizonts to merozoites that lack the ability to maintain host leukocyte cell division. Induction of merogony by FR235222 leads to an increase in expression of merozoite-marker (rhoptry) proteins. RNA-seq of FR235222-treated T. annulata-infected B cells identified deregulated expression of 468 parasite genes including a number encoding parasite ApiAP2 transcription factors. Thus, similar to T. gondii, FR235222 inhibits T. annulata HDAC (TaHDAC1) activity and places parasite histone acetylation as a major regulatory event of the transition from schizonts to merozoites.


Assuntos
Theileria annulata , Theileria , Animais , Histona Desacetilase 1/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Merozoítos/metabolismo , Esquizontes/metabolismo , Theileria/metabolismo
8.
Front Microbiol ; 13: 839524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401459

RESUMO

Rhizoctonia solani is a collective group of genetically and pathologically diverse basidiomycetous fungi that damage economically important crops. Its isolates are classified into 13 Anastomosis Groups (AGs) and subgroups having distinctive morphology and host ranges. The genetic factors driving the unique features of R. solani pathology are not well characterized due to the limited availability of its annotated genomes. Therefore, we performed genome sequencing, assembly, annotation and functional analysis of 12 R. solani isolates covering 7 AGs and select subgroups (AG1-IA; AG1-IB; AG1-IC; AG2-2IIIB; AG3-PT, isolates Rhs 1AP and the hypovirulent Rhs1A1; AG3-TB; AG4-HG-I, isolates Rs23 and R118-11; AG5; AG6; and AG8), in which six genomes are reported for the first time. Using a pangenome comparative analysis of 12 R. solani isolates and 15 other Basidiomycetes, we defined the unique and shared secretomes, CAZymes, and effectors across the AGs. We have also elucidated the R. solani-derived factors potentially involved in determining AG-specific host preference, and the attributes distinguishing them from other Basidiomycetes. Finally, we present the largest repertoire of R. solani genomes and their annotated components as a comprehensive database, viz. RsolaniDB, with tools for large-scale data mining, functional enrichment and sequence analysis not available with other state-of-the-art platforms.

9.
Nat Commun ; 13(1): 601, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105893

RESUMO

Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. We show that two consecutive mutations (R203K/G204R) in the nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found increased interaction of GSK3A kinase simultaneously with hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein. Furthermore, the host cell transcriptome analysis suggests that the mutant N protein produces dysregulated interferon response genes. Here, we provide crucial information in linking the R203K/G204R mutations in the N protein to modulations of host-virus interactions and underline the potential of the nucleocapsid protein as a drug target during infection.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral , Mutação de Sentido Incorreto , SARS-CoV-2/genética , COVID-19/enzimologia , COVID-19/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Fosforilação , Filogenia , Ligação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Arábia Saudita , Carga Viral , Replicação Viral
11.
NAR Genom Bioinform ; 3(3): lqab070, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34396095

RESUMO

Current evolutionary scenarios posit the emergence of Mycobacterium tuberculosis from an environmental saprophyte through a cumulative process of genome adaptation. Mycobacterium riyadhense, a related bacillus, is being increasingly isolated from human clinical cases with tuberculosis-like symptoms in various parts of the world. To elucidate the evolutionary relationship between M. riyadhense and other mycobacterial species, including members of the M. tuberculosis complex (MTBC), eight clinical isolates of M. riyadhense were sequenced and analyzed. We show, among other features, that M. riyadhense shares a large number of conserved orthologs with M. tuberculosis and shows the expansion of toxin/antitoxin pairs, PE/PPE family proteins compared with other non-tuberculous mycobacteria. We observed M. riyadhense lacks wecE gene which may result in the absence of lipooligosaccharides (LOS) IV. Comparative transcriptomic analysis of infected macrophages reveals genes encoding inducers of Type I IFN responses, such as cytosolic DNA sensors, were relatively less expressed by macrophages infected with M. riyadhense or M. kansasii, compared to BCG or M. tuberculosis. Overall, our work sheds new light on the evolution of M. riyadhense, its relationship to the MTBC, and its potential as a system for the study of mycobacterial virulence and pathogenesis.

13.
Sci Rep ; 11(1): 8334, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859212

RESUMO

For decades, the American palm weevil (APW), Rhynchophorus palmarum, has been a threat to coconut and oil palm production in the Americas. It has recently spread towards North America, endangering ornamental palms, and the expanding date palm production. Its behavior presents several parallelisms with a closely related species, R. ferrugineus, the red palm weevil (RPW), which is the biggest threat to palms in Asia and Europe. For both species, semiochemicals have been used for management. However, their control is far from complete. We generated an adult antennal transcriptome from APW and annotated chemosensory related gene families to obtain a better understanding of these species' olfaction mechanism. We identified unigenes encoding 37 odorant-binding proteins (OBPs), ten chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), seven gustatory receptors (GRs), 63 odorant receptors (ORs), and 28 ionotropic receptors (IRs). Noticeably, we find out the R. ferrugineus pheromone-binding protein and pheromone receptor orthologs from R. palmarum. Candidate genes identified and annotated in this study allow us to compare these palm weevils' chemosensory gene sets. Most importantly, this study provides the foundation for functional studies that could materialize as novel pest management strategies.


Assuntos
Arecaceae/parasitologia , Sequenciamento do Exoma/métodos , Genes de Insetos/genética , Estudos de Associação Genética/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Olfato/genética , Gorgulhos/genética , Gorgulhos/fisiologia , Animais , Ásia , Europa (Continente) , América do Norte , Controle Biológico de Vetores/métodos
14.
Med ; 2(6): 689-700.e4, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33821249

RESUMO

BACKGROUND: Strategies for monitoring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for combating the pandemic. Detection and mutation surveillance of SARS-CoV-2 and other respiratory viruses require separate and complex workflows that rely on highly specialized facilities, personnel, and reagents. To date, no method can rapidly diagnose multiple viral infections and determine variants in a high-throughput manner. METHODS: We describe a method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes, termed nanopore sequencing of isothermal rapid viral amplification for near real-time analysis (NIRVANA). It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus and monitor mutations for up to 96 samples in real time. FINDINGS: NIRVANA showed high sensitivity and specificity for SARS-CoV-2 in 70 clinical samples with a detection limit of 20 viral RNA copies per µL of extracted nucleic acid. It also detected the influenza A co-infection in two samples. The variant analysis results of SARS-CoV-2-positive samples mirror the epidemiology of coronavirus disease 2019 (COVID-19). Additionally, NIRVANA could simultaneously detect SARS-CoV-2 and pepper mild mottle virus (PMMoV) (an omnipresent virus and water-quality indicator) in municipal wastewater samples. CONCLUSIONS: NIRVANA provides high-confidence detection of both SARS-CoV-2 and other respiratory viruses and mutation surveillance of SARS-CoV-2 on the fly. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses. FUNDING: M.L. is supported by KAUST Office of Sponsored Research (BAS/1/1080-01). This work is supported by KAUST Competitive Research Grant (URF/1/3412-01-01; M.L. and J.C.I.B.) and Universidad Catolica San Antonio de Murcia (J.C.I.B.). A.M.H. is supported by Saudi Ministry of Education (project 436).


Assuntos
COVID-19 , Influenza Humana , COVID-19/diagnóstico , Humanos , Influenza Humana/epidemiologia , Mutação/genética , Pandemias , SARS-CoV-2/genética
15.
ACS Omega ; 6(11): 7374-7386, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778250

RESUMO

One-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method for COVID-19 diagnostics. Notwithstanding the facts that one-step qRT-PCR is well suited for the diagnosis of COVID-19 and that there are many commercially available one-step qRT-PCR kits in the market, their high cost and unavailability due to airport closures and shipment restriction became a major bottleneck that had driven the desire to produce the key components of such kits locally. Here, we provide a simple, economical, and powerful one-step qRT-PCR kit based on patent-free, specifically tailored versions of Moloney murine leukemia virus reverse transcriptase and Thermus aquaticus DNA polymerase and termed R3T (Rapid Research Response Team) one-step qRT-PCR. We also demonstrate the robustness of our enzyme production strategies and provide the optimal reaction conditions for their efficient augmentation in a one-step approach. Our kit was routinely able to reliably detect as low as 10 copies of the synthetic RNAs of SARS-CoV-2. More importantly, our kit successfully detected COVID-19 in clinical samples of broad viral titers with similar reliability and selectivity to that of the Invitrogen SuperScript III Platinum One-step qRT-PCR and TaqPath one-step RT-qPCR kits. Overall, our kit has shown robust performance in both laboratory settings and the Saudi Ministry of Health-approved testing facility.

16.
Glob Chall ; 5(4): 2000068, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33786197

RESUMO

Molecular diagnosis and surveillance of pathogens such as SARS-CoV-2 depend on nucleic acid isolation. Pandemics at the scale of COVID-19 can cause a global shortage of proprietary commercial reagents and BSL-2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. An open-source method, magnetic-nanoparticle-aided viral RNA isolation from contagious samples (MAVRICS), built upon readily available reagents, and easily assembled in any basically equipped laboratory, is thus developed. The performance of MAVRICS is evaluated using validated pathogen detection assays and real-world and contrived samples. Unlike conventional methods, MAVRICS works directly in samples inactivated in phenol-chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. MAVRICS allows wastewater biomass immobilized on membranes to be directly inactivated and lysed in TRIzol followed by RNA extraction by magnetic nanoparticles, thereby greatly reducing biohazard risk and simplifying processing procedures. Using 39 COVID-19 patient samples and two wastewater samples, it is shown that MAVRICS rivals commercial kits in detection of SARS-CoV-2, influenza viruses, and respiratory syncytial virus. Therefore, MAVRICS is safe, fast, and scalable. It is field-deployable with minimal equipment requirements and could become an enabling technology for widespread testing and wastewater monitoring of diverse pathogens.

17.
Int J Infect Dis ; 100: 216-223, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32841689

RESUMO

OBJECTIVE: The SARS-CoV-2 pathogen has established endemicity in humans. This necessitates the development of rapid genetic surveillance methodologies to serve as an adjunct with existing comprehensive, albeit though slower, genome sequencing-driven approaches. METHODS: A total of 21,789 complete genomes were downloaded from GISAID on May 28, 2020 for analyses. We have defined the major clades and subclades of circulating SARS-CoV-2 genomes. A rapid sequencing-based genotyping protocol was developed and tested on SARS-CoV-2-positive RNA samples by next-generation sequencing. RESULTS: We describe 11 major mutations which defined five major clades (G614, S84, V251, I378 and D392) of globally circulating viral populations. The clades can specifically identify using an 11-nucleotide genetic barcode. An analysis of amino acid variation in SARS-CoV-2 proteins provided evidence of substitution events in the viral proteins involved in both host entry and genome replication. CONCLUSION: Globally circulating SARS-CoV-2 genomes could be classified into 5 major clades based on mutational profiles defined by an 11-nucleotide barcode. We have successfully developed a multiplexed sequencing-based, rapid genotyping protocol for high-throughput classification of major clade types of SARS-CoV-2 in clinical samples. This barcoding strategy will be required to monitor decreases in genetic diversity as treatment and vaccine approaches become widely available.


Assuntos
COVID-19/virologia , Genoma Viral , Tipagem Molecular , SARS-CoV-2/genética , COVID-19/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Pandemias , SARS-CoV-2/classificação , Proteínas Virais/genética
18.
Cell Microbiol ; 22(12): e13255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32830401

RESUMO

Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumours that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced leukocyte transformation. Dataset comparisons highlighted a small set of genes associated with Theileria-transformed leukocyte dissemination. The roles of Granzyme A (GZMA) and RAS guanyl-releasing protein 1 (RASGRP1) were verified by CRISPR/Cas9-mediated knockdown. Knocking down expression of GZMA and RASGRP1 in attenuated macrophages led to a regain in their dissemination in Rag2/γC mice confirming their role as dissemination suppressors in vivo. We further evaluated the roles of GZMA and RASGRP1 in human B lymphomas by comparing the transcriptome of 934 human cancer cell lines to that of Theileria-transformed bovine host cells. We confirmed dampened dissemination potential of human B lymphomas that overexpress GZMA and RASGRP1. Our results provide evidence that GZMA and RASGRP1 have a novel tumour suppressor function in both T. annulata-infected bovine host leukocytes and in human B lymphomas.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor/fisiologia , Granzimas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Leucócitos/parasitologia , Linfoma de Células B/genética , Macrófagos/parasitologia , Theileria annulata/genética , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Linfoma de Células B/parasitologia , Camundongos , Theileria annulata/patogenicidade
19.
Sci Rep ; 10(1): 3982, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132598

RESUMO

Intracellular pathogens have evolved intricate mechanisms to subvert host cell signaling pathways and ensure their own propagation. A lineage of the protozoan parasite genus Theileria infects bovine leukocytes and induces their uncontrolled proliferation causing a leukemia-like disease. Given the importance of E2F transcription factors in mammalian cell cycle regulation, we investigated the role of E2F signaling in Theileria-induced host cell proliferation. Using comparative genomics and surface plasmon resonance, we identified parasite-derived peptides that have the sequence-specific ability to increase E2F signaling by binding E2F negative regulator Retinoblastoma-1 (RB). Using these peptides as a tool to probe host E2F signaling, we show that the disruption of RB complexes ex vivo leads to activation of E2F-driven transcription and increased leukocyte proliferation in an infection-dependent manner. This result is consistent with existing models and, together, they support a critical role of E2F signaling for Theileria-induced host cell proliferation, and its potential direct manipulation by one or more parasite proteins.


Assuntos
Fatores de Transcrição E2F/metabolismo , Leucócitos/citologia , Leucócitos/parasitologia , Transdução de Sinais , Theileria/fisiologia , Linhagem Celular , Proliferação de Células , Fator de Transcrição E2F1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...