Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 31(1): 2299594, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38180033

RESUMO

Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE® 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.


Assuntos
Antimaláricos , Malária , Humanos , Malária/tratamento farmacológico , Lumefantrina , Artemeter , Ácidos Graxos
2.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111562

RESUMO

Most of the individuals who die of malaria in sub-Saharan Africa are children. It is, therefore, important for this age group to have access to the right treatment and correct dose. Artemether-lumefantrine is one of the fixed dose combination therapies that was approved by the World Health Organization to treat malaria. However, the current recommended dose has been reported to cause underexposure or overexposure in some children. The aim of this article was, therefore, to estimate the doses that can mimic adult exposure. The availability of more and reliable pharmacokinetic data is essential to accurately estimate appropriate dosage regimens. The doses in this study were estimated using the physiological information from children and some pharmacokinetic data from adults due to the lack of pediatric pharmacokinetic data in the literature. Depending on the approach that was used to calculate the dose, the results showed that some children were underexposed, and others were overexposed. This can lead to treatment failure, toxicity, and even death. Therefore, when designing a dosage regimen, it is important to know and include the distinctions in physiology at various phases of development that influence the pharmacokinetics of various drugs in order to estimate the dose in young children. The physiology at each time point during the growth of a child may influence how the drug is absorbed, gets distributed, metabolized, and eliminated. From the results, there is a very clear need to conduct a clinical study to further verify if the suggested (i.e., 0.34 mg/kg for artemether and 6 mg/kg for lumefantrine) doses could be clinically efficacious.

3.
AAPS PharmSciTech ; 18(6): 2011-2025, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27933586

RESUMO

Encapsulation of antibiotics into nanocarriers has the potential to overcome resistance and disadvantages associated with conventional dosage forms as well as increase half-life of an antibiotic. Encapsulation of meropenem (MRPN) into solid lipid nanoparticles (SLNs) remains unexplored among the limited work reported on nanoformulation incorporating MRPN. The study aimed to use an experimental design, to optimize MRPN-loaded SLNs, and to undertake in vitro and in silico evaluations. A Box-Behnken design (BBD) was used to optimize manufacturing conditions of glycerol monostearate (GMS) SLNs loaded with MRPN. The SLNs were prepared using hot homogenization and ultrasonication method. Optimized MRPN-SLNs showed particle size, zeta potential, and entrapment efficiency of 112.61 ± 0.66 nm, -20.43 ± 0.99 mV, and 89.94 ± 1.26%, respectively. The morphology of the SLNs revealed nearly spherical shaped particles. Differential scanning calorimetry and X-ray diffraction analysis showed that meropenem was present in amorphous form in the SLNs. Controlled in vitro MRPN release from SLNs was achieved and followed the Korsmeyer-Peppas model (R 2 = 0.9679). Prolonged in vitro antibacterial activity against Escherichia coli was also observed. The molecular modeling showed that both hydrophobic interactions and hydrogen bonding led to a stable MRPN-GMS complex formation, which was confirmed by its low heat of formation (-5536.13 kcal/mol). This stable complex could have contributed to the controlled release of MRPN from the SLNs and subsequent sustained antibacterial activity.


Assuntos
Modelos Moleculares , Nanopartículas/química , Tienamicinas/síntese química , Antibacterianos/síntese química , Varredura Diferencial de Calorimetria/métodos , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Meropeném , Testes de Sensibilidade Microbiana/métodos , Tamanho da Partícula , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...