Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 3): 114032, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952741

RESUMO

Here the role of microplastic size on dissolved organic matter, leaching compounds and microbial community during anaerobic sludge digestion was evaluated. Compared to that without the addition of polyvinyl chloride (PVC), during the 30 days' incubation, the anaerobic sludge digestion by adding PVC at the size of 75 µm and the concentration of 2.4 g/g volatile solids (VS) showed a 8.5% lower cumulative methane production, while a 17.9% higher cumulative methane production was noted by adding PVC at the size of 3000 µm and the concentration of 2.4 g/g VS. A long-term fed-batch laboratory-scale fermenter test for 147 days further testified, that higher removal efficiencies of total solids, volatile solids, and total chemical oxygen demand, and higher methane production were noted by adding PVC (2.4 g/g VS, 3000 µm) into the fermenter. More interestingly, higher concentrations of proteins, polysaccharides, volatile fatty acids, and soluble microbial by-products component were noted in the liquid phase of sludge drawn from the fermenter added with PVC since the biomass therein showed higher efficiencies of solubilization, hydrolysis, acidification, and methanogenesis. Moreover, as identified from the fermenter added with PVC, dibutyl phthalate (DBP) was the most predominant leaching phthalates compound, although the biomass therein showed a 93.4% anaerobic biodegradability of DBP. The leaching of DBP drove the predominance of microbial community towards Synergistota and Methanosaeta. More irregular elliptical shallow dimples were noted on the PVC surface after 147 days' incubation, accompanied with abundances of Proteobacteria, Actinobacteriota, Chloroflexi, Methanosaeta and Methanobacterium. The results from this study showed that the size of microplastic was a crucial factor in evaluating its impact on anaerobic sludge digestion.


Assuntos
Microbiota , Esgotos , Anaerobiose , Reatores Biológicos , Digestão , Matéria Orgânica Dissolvida , Metano , Microplásticos , Plásticos , Cloreto de Polivinila , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...