Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1345235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559358

RESUMO

Introduction: Modern agriculture emphasizes the design of cropping systems using ecological function and production services to achieve sustainability. The functional characteristics of plants (grasses vs. legumes) affect changes in soil microbial communities that drive agroecosystem services. Information on the relationship between legume-grass mixtures and soil microorganisms in different ecological zones guides decision-making toward eco-friendly and sustainable forage production. However, it is still poorly understood how cropping patterns affect soil microbial diversity in alpine grasslands and whether this effect varies with altitude. Methods: To fill this gap in knowledge, we conducted a field study to investigate the effects of growing oats (Avena sativa L.), forage peas (Pisum sativum L.), common cornflower (Vicia sativa L.), and fava beans (Vicia faba L.) in monocultures and mixtures on the soil microbial communities in three ecological zones of the high alpine zone. Results: We found that the fungal and bacterial community structure differed among the cropping patterns, particularly the community structure of the legume mixed cropping pattern was very different from that of monocropped oats. In all ecological zones, mixed cropping significantly (p < 0.05) increased the α-diversity of the soil bacteria and fungi compared to oat monoculture. The α-diversity of the soil bacteria tended to increase with increasing elevation (MY [2,513 m] < HZ [2,661 m] < GN [3,203 m]), while the opposite was true for fungi (except for the Chao1 index in HZ, which was the lowest). Mixed cropping increased the abundance of soil fungi and bacteria across ecological zones, particularly the relative abundances of Nitrospira, Nitrososphaera, Phytophthora, and Acari. Factors affecting the bacterial community structure included the cropping pattern, the ecological zone, water content, nitrate-nitrogen, nitrate reductase, and soil capacity, whereas factors affecting fungal community structure included the cropping pattern, the ecological zone, water content, pH, microbial biomass nitrogen, and catalase. Discussion: Our study highlights the variation in soil microbial communities among different in alpine ecological regions and their resilience to cropping systems. Our results also underscore that mixed legume planting is a sustainable and effective forage management practice for the Tibetan Plateau.

2.
Genes (Basel) ; 15(2)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38397212

RESUMO

Nitrogen (N) application significantly increases tiller numbers and is accompanied by changes in endogenous hormone content. We treated seedlings of Festuca kirilowii-a perennial forage grass-with nitrogen, determined the endogenous hormone content in the tiller buds, and performed a transcriptome analysis. The application of N reduced GA3, ABA, and 5-DS content and increased ZT and IAA content. By screening DEGs in the transcriptome results, we obtained DEGs annotated to 25 GO entries and 8 KEGG pathways associated with endogenous hormones. Most of these GO entries and KEGG pathways were associated with IAA, GAS, and ABA. We conducted a validation analysis of hormone-related DEGs using qRT-PCR to demonstrate that nitrogen controls the content of endogenous hormones by regulating the expression of these DEGs, which further affects tillering in F. kirilowii.


Assuntos
Reguladores de Crescimento de Plantas , Transcriptoma , Transcriptoma/genética , Reguladores de Crescimento de Plantas/metabolismo , Nitrogênio , Perfilação da Expressão Gênica , Hormônios
3.
Nat Commun ; 15(1): 865, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286850

RESUMO

Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study.

4.
PeerJ ; 12: e16791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259666

RESUMO

Nitrogen (N) addition is a simple and effective field management approach to enhancing plant productivity. Nonetheless, the regulatory mechanisms governing nitrogen concentrations and their effect on soil enzyme activity, nutrient levels, and seed yield in the Festuca kirilowii seed field have yet to be elucidated. Therefore, this study sought to investigate the effect of N fertilizer application on soil enzyme activities, soil nutrients, and seed yield of F. kirilowii Steud cv. Huanhu, the only domesticated variety in the Festuca genus of the Poaceae family, was investigated based on two-year field experiments in the Qinghai-Tibet Plateau (QTP). Results showed that N input significantly affected soil nutrients (potential of hydrogen, total nitrogen, organic matter, and total phosphorus). In addition, soil enzyme activities (urease, catalase, sucrase, and nitrate reductase) significantly increased in response to varying N concentrations, inducing changes in soil nutrient contents. Introducing N improved both seed yield and yield components (number of tillers and number of fertile tillers). These findings suggest that the introduction of different concentrations of N fertilizers can stimulate soil enzyme activity, thus hastening nutrient conversion and increasing seed yield. The exhaustive evaluation of the membership function showed that the optimal N fertilizer treatment was N4 (75 kg·hm-2) for both 2022 and 2023. This finding provides a practical recommendation for improving the seed production of F. kirilowii in QTP.


Assuntos
Fertilizantes , Festuca , Sementes , Nitrogênio/farmacologia , Nutrientes , Solo
5.
ACS Appl Mater Interfaces ; 16(2): 2583-2592, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38173080

RESUMO

Organic piezomaterials have attracted much attention because of their easy processing, lightweight, and mechanic flexibility properties. Developing new smart organic piezomaterials is highly required for new-generation electronic applications. Here, we found a novel organic piezomaterial of organic charge-transfer complex (CTC) consisting of dibenzcarbazole analogue (DBCz) and tetracyanoquinodimethane (TCNQ) in the molecular-level heterojunction stacking mode. The DBCz-TCNQ complex exhibited ferroelectric properties (the saturated polarization of ∼1.23 µC/cm2) at room temperature with a low coercive field. The noncentrosymmetric alignment (Pc space group) led to a spontaneous polarization of this architecture and thus was the origin of the piezoelectric behavior. Lateral piezoelectric nanogenerators (PENGs) based on the thermal evaporated CTC thin-film exhibited significant energy conversion behavior under mechanical agitation with a calculated piezoelectric coefficient (d31) of ∼33 pC/N. Furthermore, such a binary CTC thin-film constructed single-electrode PENG could show steady-state sensing performance to external stimuli as this flexible wearable device precisely detected physiological signals (e.g., finger bending, blink movement, carotid artery, etc.) with a self-powered supply. This work provides that the polar CTCs can act as efficient piezomaterials for flexible energy harvesting, conversion, and wearable sensing devices with a self-powered supply, enabling great potential in healthcare, motion detection, human-machine interfaces, etc.

6.
Phys Chem Chem Phys ; 26(2): 1135-1147, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38099407

RESUMO

Two-dimensional (2D) van der Waals (vdW) heterostructures have potential applications in new low-dimensional spintronic devices owing to their unique electronic properties and magnetic anisotropy energies (MAEs). The electronic structures and magnetic properties of RuClF/WSe2 heterostructure are calculated using first-principles calculations. The most stable RuClF/WSe2 heterostructure is selected for property analysis. RuClF/WSe2 heterostructure has half-metallicity. Considering spin-orbit coupling (SOC), band inversion is present in the RuClF/WSe2 heterostructure, which is also demonstrated by the weight of the energy contributions. The local density of states (LDOS) of the edge states can provide strong evidence that the RuClF/WSe2 heterostructure has topological properties. The MAE of RuClF/WSe2 heterostructure is in-plane magnetic anisotropy (IMA), which mainly originates from the contribution of matrix element difference in Ru (dxy, dx2-y2) orbitals. The electronic properties and MAE of RuClF/WSe2 heterostructure can be regulated by biaxial strains and electric fields. The band inversion phenomenon is enhanced at electric fields in the opposite direction, which is also modified at different biaxial strains. However, the band inversion phenomenon disappears at the biaxial strains of 6% and an electric field of 0.5 V Å-1. The MAE of RuClF/WSe2 heterostructure is transformed from IMA into perpendicular magnetic anisotropy (PMA) at certain compressive strains and positively directed electric fields. The above results indicate that the RuClF/WSe2 heterostructure has potential applications in spintronic devices.

7.
Front Plant Sci ; 14: 1280771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929174

RESUMO

Introduction: Information on the relationship between soil quality and forage yield of legume-grass mixtures in different ecological regions can guide decision-making to achieve eco-friendly and sustainable pasture production. This study's objective was to assess the effects of different cropping systems on soil physical properties, nitrogen fractions, enzyme activities, and forage yield and determine suitable legume-grass mixtures for different ecoregions. Methods: Oats (Avena sativa L.), forage peas (Pisum sativum L.), common vetch (Vicia sativa L.), and fava beans (Vicia faba L.) were grown in monocultures and mixtures (YS: oats and forage peas; YJ: oats and common vetch; YC: oats and fava beans) in three ecological regions (HZ: Huangshui Valley; GN: Sanjiangyuan District; MY: Qilian Mountains Basin) in a split-plot design. Results: The results showed that the forage yield decreased with increasing altitude, with an order of GN (3203 m a.s.l.; YH 8.89 t·ha-1) < HZ (2661 m; YH 9.38 t·ha-1) < MY (2513m; YH 9.78 t·ha-1). Meanwhile, the forage yield was higher for mixed crops than for single crops in all ecological regions. In the 0-10 cm soil layer, the contents of total nitrogen (TN), microbial biomass nitrogen (MBN), soil organic matter (SOM), soluble organic nitrogen (SON), urease (UE), nitrate reductase (NR), sucrase (SC), and bacterial community alpha diversity, as well as relative abundance of dominant bacteria, were higher for mixed crops than for oats unicast. In addition, soil physical properties, nitrogen fractions, and enzyme activities varied in a wider range in the 0-10 cm soil layer than in the 10-20 cm layer, with larger values in the surface layer than in the subsurface layer. MBN, SON, UE, SC and catalase (CAT) were significantly and positively correlated with forage yield (P < 0.05). Ammonium nitrogen (ANN), nitrate nitrogen (NN), SOM and cropping systems (R) were significantly and positively correlated with Shannon and bacterial community (P < 0.05). The highest yields in the three ecological regions were 13.00 t·ha-1 for YS in MY, 10.59 t·ha-1 for YC in GN, and 10.63 t·ha-1 for YS in HZ. Discussion: We recommend planting oats and forage peas in the Qilian Mountains Basin, oats and fava beans in the Sanjiangyuan District, and oats and forage peas in Huangshui valley. Our results provide new insights into eco-friendly, sustainable, and cost-effective forage production in the Qinghai Alpine Region in China.

8.
Phys Chem Chem Phys ; 25(42): 28638-28650, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874663

RESUMO

Two-dimensional (2D) ferromagnetic (FM) semiconductors have been paid much attention due to the potential applications in spintronics. Here, the electronic and magnetic properties of 2D Janus Ni-trihalide monolayer Ni2X3Y3 (X, Y = I, Br, Cl; X ≠ Y) are investigated by first-principle calculations. The properties of Ni2X3Y3 (X, Y = I, Br, Cl; X ≠ Y) monolayers are compared by selecting the NiCl3 monolayer as the reference material. Ni2X3Y3 monolayers have two distinct magnetic ground states of ferromagnetic (FM) and antiferromagnetic (AFM). In the Ni2X3Y3 monolayer, two different orbital splits were observed, one semiconductor state and the other semimetal state. The semimetal state of Ni2X3Y3 can be tuned to semiconductor or metallic state when biaxial strain is applied. The magnetic anisotropy energy (MAE) of the Ni2X3Y3 monolayer can display variations compared to that of the NiCl3 monolayer, with the direction of easy magnetization being influenced by the specific halogen elements present. The easy magnetization direction of Ni2X3Y3 can also be changed by applying biaxial strain. The Tc of Ni2X3Y3 is predicted to be about 100 K according to the calculation of the EAFM-EFM model. The design of the Janus Ni2X3Y3 structure has expanded the range of 2D magnetic materials, a significant contribution has been made to the advancement of spintronics and its applications.

9.
PeerJ ; 11: e16181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810776

RESUMO

Abscisic acid (ABA) is a phytohormone that plays an important role in plant growth and development. Meanwhile, ABA also plays a key role in the plant response to abiotic stressors such as drought and high salinity. The pyrabactin resistance 1-like (PYR/PYL) protein family of ABA receptors is involved in the initial step of ABA signal transduction. However, no systematic studies of the PYL family in "Avena sativa, a genus Avena in the grass family Poaceae," have been conducted to date. Thus, in this study, we performed a genome-wide screening to identify PYL genes in oat and characterized their responses to drought stress. A total of 12 AsPYL genes distributed on nine chromosomes were identified. The phylogenetic analysis divided these AsPYLs into three subfamilies, based on structural and functional similarities. Gene and motif structure analysis of AsPYLs revealed that members of each subfamily share similar gene and motif structure. Segmental duplication appears to be the driving force for the expansion of PYLs, Furthermore, stress-responsive AsPYLs were detected through RNA-seq analysis. The qRT-PCR analysis of 10 AsPYL genes under drought, salt, and ABA stress revealed that AsPYL genes play an important role in stress response. These data provide a reference for further studies on the oat PYL gene family and its function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Avena/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Filogenia , Proteínas de Transporte/genética
10.
Phys Chem Chem Phys ; 25(37): 25146-25156, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37712230

RESUMO

Two-dimensional (2D) ferromagnetic (FM) materials with valley polarization are highly desirable for use in valleytronic devices. The 2D Janus materials have fascinating physical properties due to their asymmetrical structures. In this work, the electronic structure and magnetic properties of Janus RuXY (X, Y = Br, Cl, F, I, X ≠ Y) monolayers are systematically studied using first-principles calculations. RuBrCl, RuBrF, and RuClF monolayers are all FM semiconductors. The valley polarization is present in the band structure and this is determined by the spin orbit coupling (SOC). The valley splitting energy of the RuClF monolayer is as large as 204 meV, with a perpendicular magnetic anisotropy (PMA) energy of 1.918 mJ m-2 and a Curie temperature of 316 K. Therefore, spontaneous valley polarization at room temperature will be seen in the RuClF monolayer. The Curie temperature of the RuBrF monolayer is higher than that of the RuClF, but the magnetic anisotropy energy (MAE) is in-plane magnetic anisotropy (IMA). The valley splitting energy of the RuBrCl monolayer is higher and the PMA energy is lower than that of the RuClF monolayer. The Curie temperature was only 197 K. The valley polarization was modulated in the RuXY monolayers at different biaxial strains, during which the semiconductor properties are still maintained. The PMA of the RuClF and RuBrCl monolayers is enhanced by the biaxial compressive strains, which are mainly attributed to the variation of the (dyz, d2z) orbital matrix elements of the Ru atoms. The MAE of the RuBrF monolayer is tuned from IMA into PMA at a biaxial strain of -6%. These results show an example of a 2D Janus ferrovalley material.

11.
Phys Chem Chem Phys ; 25(29): 19773-19787, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37449502

RESUMO

Multiferroic van der Waals (vdW) heterojunctions have a strong and nonvolatile magnetoelectric coupling effect, which is of great significance in spintronic devices. The electronic structure and magnetic properties of a GdClBr/CuBiP2Se6 vdW multiferroic heterojunction have been calculated using first-principles methods. Due to the spin-up charge transfer and Zeeman field, the ferroelectric CuBiP2Se6 exhibits spin splitting at the gamma point. It is found that the electronic structure and magnetic properties of the GdClBr/CuBiP2Se6 vdW multiferroic heterojunction have been significantly modulated by the electric polarization of CuBiP2Se6. During the reversal of the ferroelectric polarization of CuBiP2Se6, the ferromagnetic GdClBr monolayer transforms from a semiconductor to a half-metal. Meanwhile, in both upward and downward ferroelectric polarization, the GdClBr/CuBiP2Se6 heterojunction exhibits perpendicular magnetic anisotropy with a Curie temperature of 239 K. As the strain changes from -6% to 6%, the band structure of GdClBr shifts upward, and the band structure of CuBiP2Se6 shifts downward. Compressive strain can increase the Curie temperature of the GdClBr/CuBiP2Se6 heterojunction. The magnetic anisotropy of heterojunctions highly depends on biaxial strain, where the perpendicular (in-plane) magnetic anisotropy increases with the increased compressive (tensile) strain. The vdW multiferroic GdClBr/CuBiP2Se6 heterojunction has potential applications in spintronic devices.

12.
Adv Sci (Weinh) ; 10(27): e2303443, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505392

RESUMO

The van der Waals (vdW) ferromagnet Fe3-δ GeTe2 has garnered significant research interest as a platform for skyrmionic spin configurations, that is, skyrmions and skyrmionic bubbles. However, despite extensive efforts, the origin of the Dzyaloshinskii-Moriya interaction (DMI) in Fe3-δ GeTe2 remains elusive, making it challenging to acquire these skyrmionic phases in a controlled manner. In this study, it is demonstrated that the Fe content in Fe3-δ GeTe2 has a profound effect on the crystal structure, DMI, and skyrmionic phase. For the first time, a marked increase in Fe atom displacement with decreasing Fe content is observed, transforming the original centrosymmetric crystal structure into a non-centrosymmetric symmetry, leading to a considerable DMI. Additionally, by varying the Fe content and sample thickness, a controllable transition between Néel-type skyrmions and Bloch-type skyrmionic bubbles is achieved, governed by a delicate interplay between dipole-dipole interaction and the DMI. The findings offer novel insights into the variable skyrmionic phases in Fe3-δ GeTe2 and provide the impetus for developing vdW ferromagnet-based spintronic devices.

13.
Nat Commun ; 14(1): 4562, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507418

RESUMO

The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.

14.
Mater Horiz ; 10(6): 1924-1955, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36989068

RESUMO

The two spin states of electrons are degenerate in nonmagnetic materials. The chiral-induced spin selectivity (CISS) effect provides a new strategy for manipulating electron's spin and a deeper understanding of spin selective processes in organisms. Here, we summarize the important discoveries and recent experiments performed during the development of the CISS effect, analyze the spin polarized transport in various types of materials and discuss the mechanisms, theoretical calculations, experimental techniques and biological significance of the CISS effect. The first part of this review concisely presents a general overview of the discoveries and importance of the CISS effect, laws and underlying mechanisms of which are discussed in the next section, where several classical experimental methods for detecting the CISS effect are also introduced. Based on the organic and inorganic properties of materials, the CISS effect of organic biomolecules, hybrid organic-inorganic perovskites and inorganic materials are reviewed in the third, fourth and fifth sections, especially the chiral transfer mechanism of hybrid materials and the relationship between the CISS effect and life science. In addition, conclusions and prospective future of the CISS effect are outlined at the end, where the development and applications of the CISS effect in spintronics are directly described, which is helpful for designing promising chiral spintronic devices and understanding the natural status of chirality from a new perspective.

15.
Mater Horiz ; 10(3): 788-807, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36594899

RESUMO

A magnetic Janus monolayer, a special type of material which has asymmetric arrangements of its surface at the nanoscale, has been shown to present rather exotic properties for applications in spintronics and its intersections. This review aims to offer a comprehensive review of the emergent physical properties of magnetic Janus monolayers and their van der Waals heterostructures from a theoretical point of view. The review starts by introducing the theoretical methodologies composed of the state-of-the-art methods and the challenges and limitations in validations for the descriptions of the magnetic ground states and thermodynamic properties in magnetic materials. The built-in polarization field induced physical phenomena of magnetic Janus monolayers are then presented. The tunable electronic and magnetic properties of magnetic Janus monolayer-based van der Waals heterostructures are discussed. Finally, the conclusions and future challenges in this field are prospected. This review serves as a complete summary of the two-dimensional magnetic Janus library and emergent electronic and magnetic properties in magnetic Janus monolayers and their heterostructures, and provides guidelines for the design of electronic and spintronic devices based on Janus materials.

16.
ACS Appl Mater Interfaces ; 15(4): 6209-6216, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654188

RESUMO

The integration of ferromagnetic/antiferromagnetic bilayers with exchange bias effect on flexible substrates is crucial for flexible spintronics. Here, the epitaxial Co/MnN bilayers are deposited on mica by facing-target sputtering. A large in-plane exchange bias field (HEB) of 1800 Oe with a coercive field (HC) of 2750 Oe appears in the Co (3.8 nm)/MnN (15.0 nm) bilayer at 5 K after field cooling from 300 to 5 K. Effective interfacial exchange energy Jeff of the Co/MnN bilayer is 0.83 erg/cm2. The strain-induced maximum increase of HEB and HC reaches 18% and 21%, respectively, in the Co(3.8 nm)/MnN(15.0 nm) bilayer. Strain-modulated HEB is attributed to the change of interfacial exchange coupling between Co and MnN layers. HEB is inversely proportional to Co thickness but independent of MnN thickness. The change of HEB is less than 5% after 100 bending cycles, indicating mechanical durability. The out-of-plane exchange bias also appears since Co spins are not fully reversed due to the strong pinning effect. Anisotropic magnetoresistance (AMR) and planar Hall resistance (Rxy) show obvious hysteresis due to HEB. Exchange bias-induced phase difference of AMR and Rxy almost remains unchanged at different bending strains. The results provide the basis for understanding the bending strain tailored exchange bias.

17.
J Phys Condens Matter ; 51(2)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36322999

RESUMO

Two dimensional (2D) van der Waals (vdW) heterostructures have potential applications in novel low dimensional spintronic devices due to their unique electronic and magnetic properties. Here, the electronic and magnetic properties of 2D Zr2CO2/H-FeCl2heterostructures are calculated by first principles calculations. The 2D Zr2CO2/H-FeCl2heterostructures are magnetic semiconductor. The electronic structure and magnetic anisotropy of Zr2CO2/H-FeCl2heterostructure can be regulated by the biaxial strain and external electric field. The band gap and potential difference of Zr2CO2/H-FeCl2heterostructure can be affected by in-plane biaxial strain. At a compressive strain of -8%, the Zr2CO2/H-FeCl2heterostructure becomes metallic. All of the Zr2CO2/H-FeCl2heterostructures are magnetic with in-plane magnetic anisotropy (IMA). The Zr2CO2/H-FeCl2heterostructure is a semiconductor at the electric field from -0.5 V Å-1to +0.5 V Å-1. Furthermore, Zr2CO2/H-FeCl2heterostructure shows IMA at the negative electric field, while it shows perpendicular magnetic anisotropy at the positive electric field. These results show that Zr2CO2/H-FeCl2heterostructure has potential applications in multifunctionalnanoelectronic devices.

18.
Phys Chem Chem Phys ; 24(36): 21966-21974, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069390

RESUMO

Large perpendicular magnetic anisotropy (MA) is highly desirable for realizing atomic-scale magnetic data storage which represents the ultimate limit of the density of magnetic recording. In this work, we study the MA of transition metal dimers Co-Os, Co-Co and Os-Os adsorbed on two-dimensional ferroelectric In2Se3 (In2Se3-CoOs, In2Se3-OsCo, In2Se3-CoCo and In2Se3-OsOs) using first-principles calculations. We find that the Co-Os dimer in In2Se3-CoOs has a total magnetic anisotropy energy (MAE) of ∼40 meV. The MAE arising from the Os atom in In2Se3-CoOs is up to ∼60 meV. Such large MAE is attributed to the high spin-orbit coupling constant and the onefold coordination of the Os atom. In addition, perpendicular MA can be enhanced in In2Se3-CoOs and induced in In2Se3-OsCo, In2Se3-CoCo and In2Se3-OsOs by the ferroelectric polarization reversal of In2Se3. We demonstrate that the enlargement of exchange splitting of dxy/dx2-y2 and dxz/dyz orbitals for Os atoms in In2Se3-OsOs, Co atom in In2Se3-CoOs and Os and Co atoms in In2Se3-OsCo is responsible for the increase of MAE; while, for the upper Co atom in In2Se3-CoCo and the Os atom in In2Se3-CoOs, the energy rise of the dz2 orbital owing to the change of the crystal field effect by the reversal of ferroelectric polarization results in the increase of MAE.

19.
Mater Horiz ; 9(11): 2785-2796, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36040428

RESUMO

The modulation of exchange interactions in layered magnets has fundamental research value and potential applications in spintronics. Based on first-principles calculations, the exchange interactions in the experimentally controversial room-temperature ferromagnetic 1T-VSe2 monolayer are systematically studied. It is found that three shells of nearest-neighbor Heisenberg exchange interactions and higher-order interactions are crucial for an accurate description of the magnetism and its thermal stability in the 1T-VSe2 monolayer. Based on our understanding of tuning the magnetic interactions and the magnetic ground state in the 1T-VSe2 monolayer via external factors, two modulation methods, involving adsorption of the alkali metal lithium and the electride Ca2N substrate, are proposed. In both Li-VSe2 and VSe2/Ca2N systems, the strongly frustrated Heisenberg exchange interaction competes with the Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy, leading to complex magnetic ground states, such as antiferromagnetic spin spiral and periodic antiferromagnetic cycloidal states. Moreover, the higher-order exchange interactions play a crucial role in the stabilization of long-range double-row-wise antiferromagnetic states in Li-VSe2 and VSe2/Ca2N. These results highlight the effective manipulation of exchange interactions in two-dimensional magnets.

20.
J Plant Physiol ; 275: 153735, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35687944

RESUMO

The cold tolerance of winter rapeseed (Brassica napus) cultivars is critically important for winter survival and yield formation in northern China. Few studies have examined the genetic mechanism underlying the overwintering survival of B. napus. Here, an F2 population including 174 lines and an F2:3 population including 174 lines were generated to identify the quantitative trait loci (QTLs) related to the cold tolerance of B. napus. A genetic linkage map including 1,017 markers merged into 268 bins covering 793.53 cM was constructed. A total of 16 QTLs for two cold-tolerance indicators related to overwintering success were detected among the two populations. These QTLs were responsible for explaining 0.97%-12.74% of the phenotypic variation. Two major QTLs, qOWRTA07 and qOWRLA07, explaining more than 10% of the phenotypic variation were identified in overlapping regions, and we suspected that these two QTLs might represent the same QTL mapped between the two bins, c07b004 and c07b005, corresponding to the physical interval from 21.4 M to 23.4 M on chromosome A07. One gene, BnaA07G0198300ZS, contained the candidate region for overwintering rate (OWR). RT-qPCR analysis showed that the expression of this gene significantly differed between the two parents (NST57 and CY12), and its expression was higher in NST57 than in CY12. This gene may be involved in the cold-response during overwintering period of B. napus. These results are important for the molecular breeding to improve the cold tolerance and overwintering success of winter oilseed rape.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Brassica rapa/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...