Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 704: 149596, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430697

RESUMO

PHD finger protein 7 (Phf7) is a member of the PHF family proteins, which plays important roles in spermiogenesis. Phf7 is expressed in the adult testes and its deficiency causes male infertility. In this study, we tried to find the causal relationship between Phf7 deficiency and reduced growth retardation which were found in null knock-out (Phf7-/-) mice. Phf7-/- mice were born normally in the Mendelian ratio. However, the Phf7-/- males showed decreased body weight gain, bone mineral density, and bone mineral content compared to those in wild-type (WT) mice. Histological analysis for tibia revealed increased number of osteoclast cells in Phf7-/- mice compared with that in WT mice. When we analyzed the expressions for marker genes for the initial stage of osteoclastogenesis, such as receptor activator of nuclear factor kappa B (Rank) in tibia, there was no difference in the mRNA levels between Phf7-/- and WT mice. However, the expression of tartrate-resistant acid phosphatase (Trap), a mature stage marker gene, was significantly higher in Phf7-/- mice than in WT mice. In addition, the levels of testosterone and dihydrotestosterone (DHT), more potent and active form of testosterone, were significantly reduced in the testes of Phf7-/- mice compared to those in WT mice. Furthermore, testicular mRNA levels for steroidogenesis marker genes, namely Star, Cyp11a1, Cyp17a1 and 17ß-hsd, were significantly lower in Phf7-/- mice than in WT mice. In conclusion, these results suggest that Phf7 deficiency reduces the production of male sex hormones and thereby impairs associated bone remodeling.


Assuntos
Hormônios Testiculares , Animais , Masculino , Camundongos , Remodelação Óssea , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Hormônios Testiculares/metabolismo , Testosterona/metabolismo
2.
Front Immunol ; 15: 1337528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375484

RESUMO

Introduction: The comorbidity of optic neuritis with multiple sclerosis has been well recognized. However, the causal association between multiple sclerosis and optic neuritis, as well as other eye disorders, remains incompletely understood. To address these gaps, we investigated the genetically relationship between multiple sclerosis and eye disorders, and explored potential drugs. Methods: In order to elucidate the genetic susceptibility and causal links between multiple sclerosis and eye disorders, we performed two-sample Mendelian randomization analyses to examine the causality between multiple sclerosis and eye disorders. Additionally, causal single-nucleotide polymorphisms were annotated and searched for expression quantitative trait loci data. Pathway enrichment analysis was performed to identify the possible mechanisms responsible for the eye disorders coexisting with multiple sclerosis. Potential therapeutic chemicals were also explored using the Cytoscape. Results: Mendelian randomization analysis revealed that multiple sclerosis increased the incidence of optic neuritis while reducing the likelihood of concurrent of cataract and macular degeneration. Gene Ontology enrichment analysis implicated that lymphocyte proliferation, activation and antigen processing as potential contributors to the pathogenesis of eye disorders coexisting with multiple sclerosis. Furthermore, pharmaceutical agents traditionally employed for allograft rejection exhibited promising therapeutic potential for the eye disorders coexisting with multiple sclerosis. Discussion: Multiple sclerosis genetically contributes to the development of optic neuritis while mitigating the concurrent occurrence of cataract and macular degeneration. Further research is needed to validate these findings and explore additional mechanisms underlying the comorbidity of multiple sclerosis and eye disorders.


Assuntos
Catarata , Degeneração Macular , Esclerose Múltipla , Neurite Óptica , Humanos , Predisposição Genética para Doença , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Esclerose Múltipla/complicações , Neurite Óptica/epidemiologia , Neurite Óptica/genética , Análise da Randomização Mendeliana
4.
Redox Biol ; 51: 102275, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248828

RESUMO

Mitochondrial quality control (MQC) consists of multiple processes: the prevention of mitochondrial oxidative damage, the elimination of damaged mitochondria via mitophagy and mitochondrial fusion and fission. Several studies proved that MQC impairment causes a plethora of pathological conditions including cardiovascular diseases. However, the precise molecular mechanism by which MQC reverses mitochondrial dysfunction, especially in the heart, is unclear. The mitochondria-specific peroxidase Peroxiredoxin 3 (Prdx3) plays a protective role against mitochondrial dysfunction by removing mitochondrial reactive oxygen species. Therefore, we investigated whether Prdx3-deficiency directly leads to heart failure via mitochondrial dysfunction. Fifty-two-week-old Prdx3-deficient mice exhibited cardiac hypertrophy and dysfunction with giant and damaged mitochondria. Mitophagy was markedly suppressed in the hearts of Prdx3-deficient mice compared to the findings in wild-type and Pink1-deficient mice despite the increased mitochondrial damage induced by Prdx3 deficiency. Under conditions inducing mitophagy, we identified that the damaged mitochondrial accumulation of PINK1 was completely inhibited by the ablation of Prdx3. We propose that Prdx3 interacts with the N-terminus of PINK1, thereby protecting PINK1 from proteolytic cleavage in damaged mitochondria undergoing mitophagy. Our results provide evidence of a direct association between MQC dysfunction and cardiac function. The dual function of Prdx3 in mitophagy regulation and mitochondrial oxidative stress elimination further clarifies the mechanism of MQC in vivo and thereby provides new insights into developing a therapeutic strategy for mitochondria-related cardiovascular diseases such as heart failure.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Animais , Cardiomegalia/genética , Camundongos , Mitocôndrias/genética , Peroxirredoxina III/genética , Proteínas Quinases
5.
Langmuir ; 38(6): 2145-2152, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107017

RESUMO

A pH-triggered transition from micellar aggregation to a host-guest complex was achieved based on the supramolecular interactions between calixpyridinium and pyrroloquinoline quinone disodium salt (PQQ-2Na) accompanied by a color change. Our design has the following three advantages: (1) a regular spherical micellar assembly is fabricated by the supramolecular interactions between calixpyridinium and PQQ-2Na at pH 6 in an aqueous solution, (2) increasing the pH can lead to a transition from micellar aggregation to a host-guest complex due to the deprotonation of calixpyridinium, and at the same time (3) increasing the pH can lead to a color change owing to the deprotonation of calixpyridinium and the complexation of deprotonated calixpyridinium with PQQ-2Na. Benefitting from the low toxicity of calixpyridinium and PQQ-2Na, this pH-induced transition from micellar aggregation to a host-guest complex was further studied as a controllable-release model.


Assuntos
Micelas , Cofator PQQ , Concentração de Íons de Hidrogênio , Cofator PQQ/química , Água
6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884616

RESUMO

Topoisomerase IIIß (Top3ß), the only dual-activity topoisomerase in mammals that can change topology of both DNA and RNA, is known to be associated with neurodevelopment and mental dysfunction in humans. However, there is no report showing clear associations of Top3ß with neuropsychiatric phenotypes in mice. Here, we investigated the effect of Top3ß on neuro-behavior using newly generated Top3ß deficient (Top3ß-/-) mice. We found that Top3ß-/- mice showed decreased anxiety and depression-like behaviors. The lack of Top3ß was also associated with changes in circadian rhythm. In addition, a clear expression of Top3ß was demonstrated in the central nervous system of mice. Positron emission tomography/computed tomography (PET/CT) analysis revealed significantly altered connectivity between many brain regions in Top3ß-/- mice, including the connectivity between the olfactory bulb and the cerebellum, the connectivity between the amygdala and the olfactory bulb, and the connectivity between the globus pallidus and the optic nerve. These connectivity alterations in brain regions are known to be linked to neurodevelopmental as well as psychiatric and behavioral disorders in humans. Therefore, we conclude that Top3ß is essential for normal brain function and behavior in mice and that Top3ß could be an interesting target to study neuropsychiatric disorders in humans.


Assuntos
Transtornos de Ansiedade/patologia , Comportamento Animal , Ritmo Circadiano , Conectoma , DNA Topoisomerases Tipo I/fisiologia , Depressão/patologia , Animais , Transtornos de Ansiedade/etiologia , Depressão/etiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout
7.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355692

RESUMO

Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.


Assuntos
Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Acetilação , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/deficiência , Acetiltransferase N-Terminal E/metabolismo
8.
Circulation ; 142(18): 1736-1751, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883094

RESUMO

BACKGROUND: Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS: Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS: Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS: Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose , Moléculas de Adesão Celular Neuronais , Macrófagos/metabolismo , Fatores de Crescimento Neural , Peptidomiméticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Feminino , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout para ApoE , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
9.
Langmuir ; 36(37): 11161-11168, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32844659

RESUMO

In this work, an irregular calixpyridinium-suramin sodium supramolecular assembly was constructed by the strong host-guest electrostatic interactions. More interestingly, a novel regular spherical supramolecular assembly was also fabricated by the hydrogen bonding interactions between suramin sodium and the UV accelerated addition product of deprotonated calixpyridinium in water. The same principle was also applied to construct a UV accelerated regular spherical self-assembly by the addition product of deprotonated calixpyridinium in water. Compared with the complicated and irreversible covalent connection of the light-responsive groups to the building block, which is one of the common means of obtaining light-responsive supramolecular systems, this finding not only provides a smart, facile, and universally applicable method to construct deprotonated calixpyridinium-based light-responsive host-guest systems but also provides a new idea for the development of other novel light-responsive building blocks.

10.
Cell Rep ; 30(12): 4124-4136.e5, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209473

RESUMO

CD137, a potent costimulatory receptor for CD8+ T cells, is expressed in various non-T cells, but little is known about its regulatory functions in these cells. In this study, we show that CD137 signaling, specifically in intestinal CD11b-CD103+ dendritic cells (DCs), restricts acute colitis progression. Mechanistically, CD137 engagement activates TAK1 and subsequently stimulates the AMPK-PGC-1α axis to enhance expression of the Aldh1a2 gene encoding the retinoic acid (RA) metabolizing enzyme RALDH2. RA can act on CD11b+CD103- DCs and induce SOCS3 expression, which, in turn, suppresses p38MAPK activation and interleukin-23 (IL-23) production. Administration of RA in DC-specific CD137-/- mice represses IL-23-producing CD11b+CD103- DCs and TH17 cells, indicating that RA is a major inhibitory effector molecule against intestinal CD11b+CD103- DCs. Additionally, the therapeutic effect of the anti-CD137 antibody is abrogated in DC-specific CD137-/- mice. Taken together, our results define a mechanism of paracrine immunoregulation operating between adjacent DC subsets in the intestine.


Assuntos
Aldeído Oxirredutases/metabolismo , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Colite/patologia , Células Dendríticas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Doença Aguda , Adenilato Quinase/metabolismo , Animais , Apoptose , Diferenciação Celular , Colite/imunologia , Suscetibilidade a Doenças , Fatores de Transcrição Forkhead/metabolismo , Intestinos/patologia , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/citologia , Tretinoína/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência
11.
Nature ; 578(7793): 94-101, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025018

RESUMO

Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.


Assuntos
Mutação/genética , Neoplasias/genética , Fatores Etários , Sequência de Bases , Exoma/genética , Genoma Humano/genética , Humanos , Análise de Sequência de DNA
12.
BMB Rep ; 53(2): 118-123, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31964470

RESUMO

Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair. [BMB Reports 2020; 53(2): 118-123].


Assuntos
Células da Medula Óssea/citologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células da Medula Óssea/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Vesículas Extracelulares/ultraestrutura , Coração/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Fisiológica , Técnicas de Cultura de Órgãos , Regeneração
13.
BMC Genomics ; 20(1): 685, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470794

RESUMO

BACKGROUND: Cancer genomes are peppered with somatic mutations imprinted by different mutational processes. The mutational pattern of a cancer genome can be used to identify and understand the etiology of the underlying mutational processes. A plethora of prior research has focused on examining mutational signatures and mutational patterns from single base substitutions and their immediate sequencing context. We recently demonstrated that further classification of small mutational events (including substitutions, insertions, deletions, and doublet substitutions) can be used to provide a deeper understanding of the mutational processes that have molded a cancer genome. However, there has been no standard tool that allows fast, accurate, and comprehensive classification for all types of small mutational events. RESULTS: Here, we present SigProfilerMatrixGenerator, a computational tool designed for optimized exploration and visualization of mutational patterns for all types of small mutational events. SigProfilerMatrixGenerator is written in Python with an R wrapper package provided for users that prefer working in an R environment. SigProfilerMatrixGenerator produces fourteen distinct matrices by considering transcriptional strand bias of individual events and by incorporating distinct classifications for single base substitutions, doublet base substitutions, and small insertions and deletions. While the tool provides a comprehensive classification of mutations, SigProfilerMatrixGenerator is also faster and more memory efficient than existing tools that generate only a single matrix. CONCLUSIONS: SigProfilerMatrixGenerator provides a standardized method for classifying small mutational events that is both efficient and scalable to large datasets. In addition to extending the classification of single base substitutions, the tool is the first to provide support for classifying doublet base substitutions and small insertions and deletions. SigProfilerMatrixGenerator is freely available at https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an extensive documentation at https://osf.io/s93d5/wiki/home/ .


Assuntos
Mutação , Neoplasias/genética , Software , Genômica/métodos , Humanos , Mutação INDEL
14.
Langmuir ; 35(27): 9020-9028, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203624

RESUMO

In this work, the host-guest interaction between calixpyridinium and anionic anticancer drug Alimta was studied in aqueous media. Spherical supramolecular amphiphilic assembly rather than simple complex was accidentally fabricated by the complexation of calixpyridinium with Alimta. It is the third kind of anionic guest to be discovered to form the higher-order assembly by the complexation of calixpyridinium besides polyanionic guest and anionic gemini surfactant guest. The finding of this assembly approach supplies a new idea to construct various self-assembly architectures in water via the complexation of calixpyridinium with anionic drugs. The resulting calixpyridinium-drug assemblies may also have the potential to adjust the effects of drugs.


Assuntos
Antineoplásicos/química , Pemetrexede/química , Piridinas/química , Tensoativos/química , Substâncias Macromoleculares/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
15.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-847074

RESUMO

Peach brown rot, caused by Monilinia fructicola, is one of the most serious peach diseases. A strain belonging to the Actinomycetales, named Streptomyces blastmyceticus JZB130180, was found to have a strong inhibitory effect on M. fructicola in confrontation culture. Following the inoculation of peaches in vitro, it was revealed that the fermentation broth of S. blastmyceticus JZB130180 had a significant inhibitory effect on disease development by M. fructicola. The fermentation broth of S. blastmyceticus> JZB130180 had an EC50 (concentration for 50% of maximal effect) of 38.3 μg/mL against M. fructicola, as determined in an indoor toxicity test. Analysis of the physicochemical properties of the fermentation broth revealed that it was tolerant of acid and alkaline conditions, temperature, and ultraviolet radiation. In addition, chitinase, cellulase, and protease were also found to be secreted by the strain. The results of this study suggest that S. blastmyceticus JZB130180 may be used for the biocontrol of peach brown rot.

16.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010445

RESUMO

Peach brown rot, caused by Monilinia fructicola, is one of the most serious peach diseases. A strain belonging to the Actinomycetales, named Streptomyces blastmyceticus JZB130180, was found to have a strong inhibitory effect on M. fructicola in confrontation culture. Following the inoculation of peaches in vitro, it was revealed that the fermentation broth of S. blastmyceticus JZB130180 had a significant inhibitory effect on disease development by M. fructicola. The fermentation broth of S. blastmyceticus JZB130180 had an EC50 (concentration for 50% of maximal effect) of 38.3 µg/mL against M. fructicola, as determined in an indoor toxicity test. Analysis of the physicochemical properties of the fermentation broth revealed that it was tolerant of acid and alkaline conditions, temperature, and ultraviolet radiation. In addition, chitinase, cellulase, and protease were also found to be secreted by the strain. The results of this study suggest that S. blastmyceticus JZB130180 may be used for the biocontrol of peach brown rot.


Assuntos
Ascomicetos/patogenicidade , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Celulase/metabolismo , Quitinases/metabolismo , Fermentação , Frutas/microbiologia , Controle Biológico de Vetores/métodos , Filogenia , Doenças das Plantas/prevenção & controle , Prunus persica/microbiologia , Sideróforos/metabolismo , Streptomyces/fisiologia
17.
Exp Mol Med ; 50(7): 1-11, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054454

RESUMO

N-α-acetyltransferase 10 (NAA10) is a subunit of Nα-terminal protein acetyltransferase that plays a role in many biological processes. Among the six N-α-acetyltransferases (NATs) in eukaryotes, the biological significance of the N-terminal acetyl-activity of Naa10 has been the most studied. Recent findings in a few species, including humans, indicate that loss of N-terminal acetylation by NAA10 is associated with developmental defects. However, very little is known about the role of NAA10, and more research is required in relation to the developmental process. This review summarizes recent studies to understand the function of NAA10 in the development of multicellular organisms.


Assuntos
Desenvolvimento Embrionário , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Processamento de Proteína Pós-Traducional
18.
Genome Res ; 28(5): 654-665, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632087

RESUMO

Cisplatin reacts with DNA and thereby likely generates a characteristic pattern of somatic mutations, called a mutational signature. Despite widespread use of cisplatin in cancer treatment and its role in contributing to secondary malignancies, its mutational signature has not been delineated. We hypothesize that cisplatin's mutational signature can serve as a biomarker to identify cisplatin mutagenesis in suspected secondary malignancies. Knowledge of which tissues are at risk of developing cisplatin-induced secondary malignancies could lead to guidelines for noninvasive monitoring for secondary malignancies after cisplatin chemotherapy. We performed whole genome sequencing of 10 independent clones of cisplatin-exposed MCF-10A and HepG2 cells and delineated the patterns of single and dinucleotide mutations in terms of flanking sequence, transcription strand bias, and other characteristics. We used the mSigAct signature presence test and nonnegative matrix factorization to search for cisplatin mutagenesis in hepatocellular carcinomas and esophageal adenocarcinomas. All clones showed highly consistent patterns of single and dinucleotide substitutions. The proportion of dinucleotide substitutions was high: 8.1% of single nucleotide substitutions were part of dinucleotide substitutions, presumably due to cisplatin's propensity to form intra- and interstrand crosslinks between purine bases in DNA. We identified likely cisplatin exposure in nine hepatocellular carcinomas and three esophageal adenocarcinomas. All hepatocellular carcinomas for which clinical data were available and all esophageal cancers indeed had histories of cisplatin treatment. We experimentally delineated the single and dinucleotide mutational signature of cisplatin. This signature enabled us to detect previous cisplatin exposure in human hepatocellular carcinomas and esophageal adenocarcinomas with high confidence.


Assuntos
Cisplatino/intoxicação , Análise Mutacional de DNA/métodos , Sequenciamento do Exoma/métodos , Mutação/efeitos dos fármacos , Adenocarcinoma/genética , Antineoplásicos/intoxicação , Carcinoma Hepatocelular/genética , Linhagem Celular , Neoplasias Esofágicas/genética , Genoma Humano/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Mutagênese/efeitos dos fármacos
19.
Autophagy ; 14(1): 120-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28605287

RESUMO

Oxidative stress activates macroautophagy/autophagy and contributes to atherogenesis via lipophagic flux, a form of lipid removal by autophagy. However, it is not known exactly how endogenous antioxidant enzymes are involved in lipophagic flux. Here, we demonstrate that the antioxidant PRDX1 (peroxiredoxin 1) has a crucial role in the maintenance of lipophagic flux in macrophages. PRDX1 is more highly expressed than other antioxidant enzymes in monocytes and macrophages. We determined that Prdx1 deficiency induced excessive oxidative stress and impaired maintenance of autophagic flux in macrophages. Prdx1-deficient macrophages had higher intracellular cholesterol mass and lower cholesterol efflux compared with wild type. This perturbation in cholesterol homeostasis was due to impaired lipophagic cholesterol hydrolysis caused by excessive oxidative stress, resulting in the inhibition of free cholesterol formation and the reduction of NR1H3 (nuclear receptor subfamily 1, group H, member 3) activity. Notably, impairment of both lipophagic flux and cholesterol efflux was restored by the 2-Cys PRDX-mimics ebselen and gliotoxin. Consistent with this observation, apoe -/- mice transplanted with bone marrow from prdx1-/-apoe-/- mice had increased plaque formation compared with apoe-/- BM-transplanted recipients. This study reveals that PRDX1 is crucial to regulating lipophagic flux and maintaining macrophage cholesterol homeostasis against oxidative stress. We suggest that PRDX1-dependent control of oxidative stress may provide a strategy for treating atherosclerosis and autophagy-related human diseases.


Assuntos
Autofagia , Colesterol/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Peroxirredoxinas/deficiência , Animais , Aterosclerose/enzimologia , Células Cultivadas , Humanos , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Knockout , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/uso terapêutico
20.
Sci Transl Med ; 9(412)2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-29046434

RESUMO

Many traditional pharmacopeias include Aristolochia and related plants, which contain nephrotoxins and mutagens in the form of aristolochic acids and similar compounds (collectively, AA). AA is implicated in multiple cancer types, sometimes with very high mutational burdens, especially in upper tract urothelial cancers (UTUCs). AA-associated kidney failure and UTUCs are prevalent in Taiwan, but AA's role in hepatocellular carcinomas (HCCs) there remains unexplored. Therefore, we sequenced the whole exomes of 98 HCCs from two hospitals in Taiwan and found that 78% showed the distinctive mutational signature of AA exposure, accounting for most of the nonsilent mutations in known cancer driver genes. We then searched for the AA signature in 1400 HCCs from diverse geographic regions. Consistent with exposure through known herbal medicines, 47% of Chinese HCCs showed the signature, albeit with lower mutation loads than in Taiwan. In addition, 29% of HCCs from Southeast Asia showed the signature. The AA signature was also detected in 13 and 2.7% of HCCs from Korea and Japan as well as in 4.8 and 1.7% of HCCs from North America and Europe, respectively, excluding one U.S. hospital where 22% of 87 "Asian" HCCs had the signature. Thus, AA exposure is geographically widespread. Asia, especially Taiwan, appears to be much more extensively affected, which is consistent with other evidence of patterns of AA exposure. We propose that additional measures aimed at primary prevention through avoidance of AA exposure and investigation of possible approaches to secondary prevention are warranted.


Assuntos
Ácidos Aristolóquicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Ásia , Geografia , Humanos , Imunoterapia , Neoplasias Hepáticas/genética , Mutagênese/genética , Mutação/genética , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA