Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(3): e09060, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284681

RESUMO

This research aimed to investigate the present status of disease prevalence and usage of aqua drugs for various aquaculture operations in the Narsingdi region of Bangladesh. Data were collected through the market survey, preset questionnaire interview, personal contact, and participatory rural appraisal tools. Amongst the respondents, the maximum percentages were found practicing mixed cultures of carp, tilapia, and pangas. The respondents suggested that epizootic ulcerative syndrome, saprolegniasis, streptococcosis, tail and fin rot and bacillary necrosis are common fish diseases in the area. About 140 drugs of different companies used in aquaculture for different purposes such as disease treatment, growth enhancement, water quality improvement, toxic gas removal, improvement of feed conversion ratio. Zeolite, rotenone, disinfectant, oxygen precursors, ammonia reducers, and probiotics were applied for pond preparation, water, and soil quality maintenance, while 30 different antibiotics were used for the purpose of treatment. Among the available antibiotics, oxytetracycline, ciprofloxacin, enrofloxacin, erythromycin, sulphadiazine, and trimethoprim were found extensively used by the fish farmers. Four enzymes and eighteen growth promoters were identified as being utilized to enhance digestion and boost up the production. This study elicited various issues connected with application and administration of such aqua chemicals, including farmers' ignorance about their usage, proper doses, application methods, withdrawal period, and the human health concerns associated with their irresponsible use. However, the consequences of these chemical products to the environment, animal health, and human health required further study for the betterment of mankind.

2.
J Pers Med ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946372

RESUMO

Nowadays, cervical cancer (CC) is treated as the leading cancer among women throughout the world. Despite effective vaccination and improved surgery and treatment, CC retains its fatality rate of about half of the infected population globally. The major screening biomarkers and therapeutic target identification have now become a global concern. In the present study, we have employed systems biology approaches to retrieve the potential biomarkers and pathways from transcriptomic profiling. Initially, we have identified 76 of each up-regulated and down-regulated gene from a total of 4643 differentially expressed genes. The up-regulatory genes mainly concentrate on immune-inflammatory responses, and the down-regulatory genes are on receptor binding and gamma-glutamyltransferase. The involved pathways associated with these genes were also assessed through pathway enrichment, and we mainly focused on different cancer pathways, immunoresponse, and cell cycle pathways. After the subsequent enrichment of these genes, we have identified 12 hub genes, which play a crucial role in CC and are verified by expression profile analysis. From our study, we have found that genes LILRB2 and CYBB play crucial roles in CC, as reported here for the first time. Furthermore, the survivability of the hub genes was also assessed, and among them, finally, CXCR4 has been identified as one of the most potential differentially expressed genes that might play a vital role in the survival of CC patients. Thus, CXCR4 could be used as a prognostic and/or diagnostic biomarker and a drug target for CC.

3.
Int J Antimicrob Agents ; 56(6): 106177, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32987103

RESUMO

To date, the global COVID-19 pandemic has been associated with 11.8 million cases and over 545481 deaths. In this study, we have employed virtual screening approaches and selected 415 lead-like compounds from 103 million chemical substances, based on the existing drugs, from PubChem databases as potential candidates for the S protein-mediated viral attachment inhibition. Thereafter, based on drug-likeness and Lipinski's rules, 44 lead-like compounds were docked within the active side pocket of the viral-host attachment site of the S protein. Corresponding ligand properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile were measured. Furthermore, four novel inhibitors were designed and assessed computationally for efficacy. Comparative analysis showed the screened compounds in this study maintain better results than the proposed mother compounds, VE607 and SSAA09E2. The four designed novel lead compounds possessed more fascinating output without deviating from any of Lipinski's rules. They also showed higher bioavailability and the drug-likeness score was 0.56 and 1.81 compared with VE607 and SSAA09E2, respectively. All the screened compounds and novel compounds showed promising ADMET properties. Among them, the compound AMTM-02 was the best candidate, with a docking score of -7.5 kcal/mol. Furthermore, the binding study was verified by molecular dynamics simulation over 100 ns by assessing the stability of the complex. The proposed screened compounds and the novel compounds may give some breakthroughs for the development of a therapeutic drug to treat SARS-CoV-2 proficiently in vitro and in vivo.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos , Domínio Catalítico , Humanos , Simulação de Dinâmica Molecular , Filogenia , Glicoproteína da Espícula de Coronavírus/química , Tratamento Farmacológico da COVID-19
4.
In Silico Pharmacol ; 6(1): 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30607324

RESUMO

Shigella flexneri 2a is one of the most pathogenic bacteria among the Shigella spp., which is responsible for dysentery and causes masses of deaths throughout the world per year. A proper identification of the potential drug targets and inhibitors is crucial for the treatment of the shigellosis due to their emerging multidrug resistance (MDR) patterns. In this study, a systematic subtractive approach was implemented for the identification of novel therapeutic targets of S. flexneri 2a (301) through genome-wide metabolic pathway analysis of the essential genes and proteins. Ligand-based virtual screening and ADMET analyses were also made for the identification of potential inhibitors as well. Initially, we found 70 essential unique proteins as novel targets. After subsequent prioritization, finally we got six unique targets as the potential therapeutic targets and their three-dimensional models were built thereafter. Aspartate-ß-semialdehyde dehydrogenase (ASD), was the most potent target among them and used for docking analysis through ligand-based virtual screening. The compound 3 (PubChem CID: 11319750) suited well as the best inhibitor of the ASD through ADMET and enzyme inhibition capacity analysis. To end, we hope that our proposed therapeutic targets and its inhibitors might give some breakthrough to treat shigellosis efficiently in in vitro.

5.
J Immunol Res ; 2017: 6412353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29082265

RESUMO

Shigellosis, a bacillary dysentery, is closely associated with diarrhoea in human and causes infection of 165 million people worldwide per year. Casein-degrading serine protease autotransporter of enterobacteriaceae (SPATE) subfamily protein SigA, an outer membrane protein, exerts both cytopathic and enterotoxic effects especially cytopathic to human epithelial cell type-2 (HEp-2) and is shown to be highly immunogenic. In the present study, we have tried to impose the vaccinomics approach for designing a common peptide vaccine candidate against the immunogenic SigA of Shigella spp. At first, 44 SigA proteins from different variants of S. flexneri, S. dysenteriae, S. boydii, and S. sonnei were assessed to find the most antigenic protein. We retrieved 12 peptides based on the highest score for human leukocyte antigen (HLA) supertypes analysed by NetCTL. Initially, these peptides were assessed for the affinity with MHC class I and class II alleles, and four potential core epitopes VTARAGLGY, FHTVTVNTL, HTTWTLTGY, and IELAGTLTL were selected. From these, FHTVTVNTL and IELAGTLTL peptides were shown to have 100% conservancy. Finally, IELAGTLTL was shown to have the highest population coverage (83.86%) among the whole world population. In vivo study of the proposed epitope might contribute to the development of functional and unique widespread vaccine, which might be an operative alleyway to thwart dysentery from the world.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/genética , Disenteria Bacilar/imunologia , Células Epiteliais/fisiologia , Epitopos Imunodominantes/genética , Shigella/imunologia , Sistemas de Secreção Tipo V/genética , Vacinas de Subunidades Antigênicas/genética , Caseínas/metabolismo , Diarreia , Mapeamento de Epitopos , Antígenos HLA/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Vacinação em Massa , Ligação Proteica , Conformação Proteica , Sistemas de Secreção Tipo V/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA