Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 151(9): 1611-1625, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762443

RESUMO

High-grade neuroendocrine tumors (NETs) of the lung consist of small-cell lung cancer (SCLC) and large-cell neuroendocrine carcinoma (LCNEC). Both exhibit aggressive malignancy with poor prognosis. The transformation of lung adenocarcinoma (ADC) to SCLC or LCNEC also contributes to acquired resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs). Despite initially being responsive to chemotherapy, high-grade NET patients inevitably develop drug resistance; thus, novel therapeutic targets are urgently needed for these patients. Our study reported that VGF (nerve growth factor inducible), a factor mainly expressed in neurons during neural development, is highly expressed in SCLC and LCNEC as well as in a subset of ADCs, whereas targeting VGF attenuates cancer cell growth and tumor formation. High VGF expression was associated with advanced stage SCLC and predicted poor prognosis in lung ADC. In addition, EGFR-TKI selection enriched VGF expression in TKI-resistant ADC under epigenetic control. The VGF locus possessed the HDAC1 binding site, and treatment of ADC cells with the HDAC1 inhibitor induced VGF expression. High VGF expression was associated with chemoresistance, and silencing VGF induced BMF and BCL2L11 expression and rendered lung cancer cells sensitive to chemotherapy drugs. These findings suggested the potential of VGF as a prognostic factor and therapeutic target in lung cancers with neuroendocrine feature.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma de Células Grandes , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinoma de Células Grandes/patologia , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fatores de Crescimento Neural , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
2.
Autophagy ; 18(4): 921-934, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34470575

RESUMO

ABBREVIATIONS: ATG14: autophagy related 14; CDH2: cadherin 2; ChIP-qPCR: chromatin immunoprecipitation quantitative polymerase chain reaction; CQ: chloroquine; ECAR: extracellular acidification rate; EMT: epithelial-mesenchymal transition; EPCAM: epithelial cell adhesion molecule; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP1LC3C/LC3C: microtubule associated protein 1 light chain 3 gamma; NDUFV2: NADH:ubiquinone oxidoreductase core subunit V2; OCR: oxygen consumption rate; ROS: reactive oxygen species; RT-qPCR: reverse-transcriptase quantitative polymerase chain reaction; SC: scrambled control; shRNA: short hairpin RNA; SNAI2: snail family transcriptional repressor 2; SOX2: SRY-box transcription factor 2; SQSTM1/p62: sequestosome 1; TGFB/TGF-ß: transforming growth factor beta; TOMM20: translocase of outer mitochondrial membrane 20; ZEB1: zinc finger E-box binding homeobox 1.


Assuntos
Autofagia , Neoplasias Pulmonares , Autofagia/fisiologia , Plasticidade Celular , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Stem Cells ; 39(10): 1298-1309, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182610

RESUMO

Programmed death-ligand 1 (PD-L1), an immune checkpoint ligand, is recognized as a potential target for cancer immunotherapy as well as for the induction of transplantation tolerance. However, how the crosstalk between stem cell programming and cytokine signaling regulates PD-L1 expression during stem cell differentiation and cancer cell plasticity remains unclear. Herein, we reported that PD-L1 expression was regulated by SOX2 during embryonic stem cell (ESC) differentiation and lung cancer cell plasticity. PD-L1 was induced during ESC differentiation to fibroblasts and was downregulated during SOX2-mediated reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs). Furthermore, SOX2 activation affected cancer cell plasticity and inhibited PD-L1 expression in lung cancer cells. We discovered that the H3K27ac signal at the PD-L1 locus was enhanced during ESC differentiation to fibroblasts as well as during cancer plasticity of SOX2-positive lung cancer cells to SOX2-negative counterparts. Romidepsin, an epigenetic modifier, induced PD-L1 expression in lung cancer cells, whereas TGF-ß stimulation downregulated SOX2 but upregulated PD-L1 expression in lung cancer cells. Furthermore, in addition to PD-L1, the expressions of EGFR and its ligand HBEGF were downregulated by activation of endogenous SOX2 expression during lung cancer cell plasticity and iPSC reprogramming, and the activation of EGFR signaling by HBEGF upregulated PD-L1 expression in lung cancer cells. Together, our results reveal the crosstalk between SOX2 programming and cytokine stimulation influences PD-L1 expression, and these findings may provide insights into PD-L1-mediated therapeutics.


Assuntos
Antígeno B7-H1 , Epigênese Genética , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Diferenciação Celular/genética , Plasticidade Celular/genética , Citocinas/metabolismo , Receptores ErbB/metabolismo , Humanos , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células-Tronco/citologia
4.
Carcinogenesis ; 42(7): 951-960, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993270

RESUMO

Inhibitors of DNA binding and cell differentiation (ID) proteins regulate cellular differentiation and tumor progression. Whether ID family proteins serve as a linkage between pathological differentiation and cancer stemness in colorectal cancer is largely unknown. Here, the expression of ID4, but not other ID family proteins, was enriched in LGR5-high colon cancer stem cells. Its high expression was associated with poor pathological differentiation of colorectal tumors and shorter survival in patients. Knockdown of ID4 inhibited the growth and dissemination of colon cancer cells, while enhancing chemosensitivity. Through gene expression profiling analysis, brain-derived neurotrophic factor (BDNF) was identified as a downstream target of ID4 expression in colorectal cancer. BDNF knockdown decreased the growth and migration of colon cancer cells, and its expression enhanced dissemination, anoikis resistance and chemoresistance. ID4 silencing attenuated the epithelial-to-mesenchymal transition pattern in colon cancer cells. Gene cluster analysis revealed that ID4 and BDNF expression was clustered with mesenchymal markers and distant from epithelial genes. BDNF silencing decreased the expression of mesenchymal markers Vimentin, CDH2 and SNAI1. These findings demonstrated that ID4-BDNF signaling regulates colorectal cancer survival, with the potential to serve as a prognostic marker in colorectal cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carcinogênese/patologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Diferenciação/metabolismo , Células-Tronco Neoplásicas/patologia , Apoptose , Biomarcadores Tumorais/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Proteínas Inibidoras de Diferenciação/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
5.
Sci Rep ; 10(1): 8261, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427884

RESUMO

Signaling elicited by the stem cell factors SOX2, OCT4, KLF4, and MYC not only mediates reprogramming of differentiated cells to pluripotency but has also been correlated with tumor malignancy. In this study, we found SOX2 expression signifies poor recurrence-free survival and correlates with advanced pathological grade in bladder cancer. SOX2 silencing attenuated bladder cancer cell growth, while its expression promoted cancer cell survival and proliferation. Under low-serum stress, SOX2 expression promoted AKT phosphorylation and bladder cancer cells' spheroid-forming capability. Furthermore, pharmacological inhibition of AKT phosphorylation, using MK2206, inhibited the SOX2-mediated spheroid formation of bladder cancer cells. Gene expression profiling showed that SOX2 expression, in turn, induced IGF2 expression, while SOX2 silencing inhibited IGF2 expression. Moreover, knocking down IGF2 and IGF1R diminished bladder cancer cell growth. Lastly, pharmacological inhibition of IGF1R, using linsitinib, also inhibited the SOX2-mediated spheroid formation of bladder cancer cells under low-serum stress. Our findings indicate the SOX2-IGF2 signaling affects the aggressiveness of bladder cancer cell growth. This signaling could be a promising biomarker and therapeutic target for bladder cancer intervention.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator 4 Semelhante a Kruppel , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
6.
Sci Rep ; 10(1): 2066, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034239

RESUMO

Changes in expression patterns of serum carcinoembryonic antigen at initial diagnosis (CEAIn) and disease progression (CEAPd) in lung cancer patients under EGFR-tyrosine kinase inhibitors (TKI) treatment may reflect different tumor progression profiles. Of the 1736 lung cancer patients identified from the cancer registry group between 2011 to 2016, we selected 517 patients with advanced stage adenocarcinoma, data on EGFR mutation status and CEAIn, among whom were 288 patients with data on CEAPd, eligible for inclusion in the correlation analysis of clinical characteristics and survival. Multivariable analysis revealed that CEAIn expression was associated with poor progression-free survival in patients harboring mutant EGFR. Moreover, CEAIn and CEAPd were associated with the good and poor post-progression survival, respectively, in the EGFR-mutant group. Cell line experiments revealed that CEA expression and cancer dissemination can be affected by EGFR-TKI selection. EGFR-mutant patients, exhibiting high CEAIn (≥5 ng/mL) and low CEAPd (<5 ng/mL), showed a potential toward displaying new metastasis. Taken together, these findings support the conclusion that EGFR mutation status is a critical factor in determining prognostic potential of CEAIn and CEAPd in patients under EGFR-TKI treatment, and CEAIn and CEAPd are associated with distinct cancer progression profiles.


Assuntos
Antígeno Carcinoembrionário/sangue , Neoplasias Pulmonares/sangue , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Progressão da Doença , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...