Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119930, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160544

RESUMO

Sulfate radical (SO4•-), formed by persulfate (PS) activation during advanced oxidation process (AOPs), can be used for the remediation of organic contaminated soil. However, the role of biochar and microwave (MW) in the activation of PS is not fully understood, especially the corresponding mechanism. Herein, biochar combined with MW was used to activate PS for the remediation of ethyl-parathion (PTH)-polluted soil. The dynamic evolutions of PTH under different conditions, such as biochar content, particle size, reaction temperature, and the degradation mechanisms of PTH were also systematically investigated. Significant enhancement performance on PTH removal was observed after adding biochar, which was 88.78% within 80 min. Meanwhile, activating temperature exhibited remarkable abilities to activate PS for PTH removal. The higher content of adsorption sites in nano-biochar facilitated the removal of PTH. Furthermore, chemical probe tests coupled with quenching experiments confirmed that the decomposition of PS into active species, such as SO4•-, •OH, O2•- and 1O2, contributed to the removal of PTH in biochar combined with MW system, which could oxidize PTH into oxidative products, including paraoxon, 4-ethylphenol, and hydroquinone. The results of this study provide valuable insights into the synergistic effects of biochar and MW in the PS activation, which is helpful for the potential application of biochar materials combined with MW-activated PS in the remediation of pesticide-polluted soils.


Assuntos
Paration , Poluentes Químicos da Água , Solo , Micro-Ondas , Poluição Ambiental , Carvão Vegetal/química , Oxirredução , Poluentes Químicos da Água/química
2.
Opt Lett ; 48(11): 3087-3090, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262287

RESUMO

The Dammann grating (DG), which redistributes a collimated laser beam into a spot array with a uniform intensity, is a widely adopted approach for profile measurement. Conventional DGs for dense spot projection are binary phase gratings with precisely designed groove structures, which suffer from low efficiency, poor uniformity, and a hard-to-fabricate fine feature size when utilized for a large field of view (FOV). Here, we propose a new, to the best of our knowledge, hybrid DG architecture consisting of two different grating periods which effectively generates an engineering M2 × N2 spot array with a non-complex structural design. As a proof-of-concept, a dual-period hybrid DG with a two-scale grating period ratio of 11.88 µm/95.04 µm (∼1/8) is designed and fabricated as a means to generate a dense 72 × 72 diffraction spot array with a FOV of 17° × 17°. In addition, the DG exhibits superior performance, with a high efficiency (>60%) and a low non-uniformity (<18%) at a wavelength of 532 nm. This kind of hybrid DG constructed from photoresist patterns with a minimum feature size of ∼1.2 µm can be perfectly fabricated by maskless projection lithography for large-scale and low-cost production. The proposed dual-period hybrid DG can pave the way for depth-perception-related applications such as face unlocking and motion sensing.

3.
Chemosphere ; 253: 126679, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283425

RESUMO

Advanced persulfate oxidation technology is widely used in organic pollution control of super fund sites. In recent years, microwave radiation has been proven a promising method for persulfate activation. However, most of the prior works were focused on the treatment of polluted water, but there are few reports aiming at contaminated sites, especially the knowledge of using microwave activated persulfate technology to repair pesticide-contaminated sites. In this study, an effective activation/oxidation method for the remediation of pesticide-contaminated soil, i.e., microwave/persulfate, was developed to treat soil containing ethyl-parathion. The concentration of persulfate, reaction temperature, and time were optimised. The results showed that up to 77.32% of ethyl-parathion was removed with the addition of 0.1 mmol·persulfate·g-1 soil under the microwave temperature of 60 °C. In comparison, 19.43% of ethyl-parathion was removed at the same reaction temperature under the condition of water bath activated persulfate. Electron paramagnetic resonance (EPR) spectroscopy combined with spin-trapping technology was used to detect reactive oxidation species, and OH and SO4- were observed in the microwave/persulfate system. Quenching experiments suggested that ethyl-parathion was degraded by the generated OH and SO4-. Paraoxon, phenylphosphoric acid, 4-nitrophenol, dimethyl ester phosphate, and some alkanes were the dominant oxidative products identified by gas chromatography-mass spectrometry (GC-MS) analysis. A possible pathway for ethyl-parathion degradation was proposed in this study. The results obtained serve as the guidance to the development of remediation technologies involving persulfate and microwave for soil contaminated by organic contaminants such as pesticides.


Assuntos
Recuperação e Remediação Ambiental/métodos , Micro-Ondas , Paration/química , Sulfatos/química , Poluição Ambiental , Oxirredução , Solo/química , Poluentes do Solo/química , Temperatura
4.
Environ Sci Technol ; 53(17): 10120-10130, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31403286

RESUMO

Environmentally persistent free radicals (EPFRs) are emerging contaminants occurring in combustion-borne particulates and atmospheric particulate matter, but information on their formation and behavior on fly ash from municipal solid waste (MSW) incinerators is scarce. Here, we have found that MSW-associated fly ash samples contain an EPFR concentration of 3-10 × 1015 spins g-1, a line width (ΔHp-p) of ∼8.6 G, and a g-factor of 2.0032-2.0038. These EPFRs are proposed to be mixtures of carbon-centered and oxygen-centered free radicals. Fractionation of the fly ash-associated EPFRs into solvent-extracted and nonextractable radicals suggests that the solvent-extracted part accounts for ∼45-73% of the total amount of EPFRs. Spin densities of solvent-extracted EPFRs correlate positively with the concentrations of Fe, Cu, Mn, Ti, and Zn, whereas similar correlations are comparatively insignificant for nonextractable EPFRs. Under natural conditions, these two types of EPFRs exhibit different stabilization that solvent-extracted EPFRs are relatively unstable, whereas the nonextractable fraction possesses a long life span. Significant correlations between concentrations of solvent-extracted EPFRs and generation of hydroxyl and superoxide radicals are found. Overall, our results suggest that the fractionated solvent-extracted and nonextractable EPFRs may experience different formation and stabilization processes and health effects.


Assuntos
Cinza de Carvão , Resíduos Sólidos , Radicais Livres , Incineração , Material Particulado , Solventes
5.
Environ Int ; 129: 154-163, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128436

RESUMO

This paper presents the interaction of benzo[a]pyrene (B[a]P) with Cu(II)-montmorillonite to investigate the formation, evolution and potential toxicity of environmentally persistent free radicals (EPFRs) under dark and visible light irradiation conditions. Degradation of B[a]P and the generated transformative products on clay mineral are monitored by gas chromatography-mass spectrometry (GC-MS) technique. Hydroxyl-B[a]P and B[a]P-diones are observed during the transformation of B[a]P under dark condition. B[a]P-3,6-dione and B[a]P-6,12-dione are the main products under visible light irradiation. B[a]P transformation is accompanied by the formation of EPFRs, which are quantified by electron paramagnetic resonance (EPR) spectroscopy. With increasing reaction time, the concentrations of the produced EPFRs are initially increased and then gradually decrease to an undetectable level. The deconvolution results of EPR spectra reveal formation of three types of organic radicals (carbon-centered radicals, oxygen-centered radicals, and carbon-centered radicals with a conjugated oxygen), which also co-exist. Correspondingly, visible-light irradiation promotes the formation and the decay of these EPFRs. The produced B[a]P-type EPFRs induce the generation of reactive oxygen species (ROS), such as superoxide (O2-) and hydroxide radicals (OH), which may cause oxidative stress to cells and tissues of organisms. The toxicity of degradation products is evaluated by the livability of human gastric epithelial GES-1cells. The toxicity is initially increased and then decreases with the elapsed reaction time, which correlates with the evolution of EPFRs concentrations. The present work provides direct evidence that the formation of EPFRs in interaction of PAHs with metal-contaminated clays may result in negative effects to human health.


Assuntos
Bentonita/química , Benzo(a)pireno/química , Cobre/química , Espécies Reativas de Oxigênio/química , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...