Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279221

RESUMO

BACKGROUND AND AIMS: The Montgomery-Koyama-Smith (MKS) equation predicts that total leaf area per shoot is proportional to the product of the sum of individual leaf widths and maximum individual leaf length, which has been validated for some herbaceous and woody plants. The equation is also predicted to be valid in describing the relationship between the total stomatal area per micrograph (AT) and the product of the sum of individual stomatal widths (denoted as LKS) and maximum individual stomatal length (denoted by WKS) in any particular micrograph. METHODS: To test the validity of the MKS equation, 69,931 stomata (from 720 stomatal micrographs from 12 Magnoliaceae species) were examined. The area of each stoma was calculated using empirical measurements of stomatal length and width multiplied by a constant. Six equations describing the relationships among AT, LKS, and WKS were compared. The root-mean-square (RMSE) and the Akaike information criterion (AIC) were used to measure the goodness of fit, and the trade-off between the goodness of fit and the structural complexity of each model, respectively. KEY RESULTS: Analyses supported the validity of the MKS equation and the power-law equation AT ∝ (LKS∙WKS)α, where a is a scaling exponent. The estimated values of α at the species level and for the pooled data were all statistically smaller than unity, which did not support the hypothesis that AT ∝ LTS∙WTS. The power-law equation had smaller RMSE and AIC values than the MKS equation for the data from the 12 individual species and the pooled data. CONCLUSIONS: These results indicate that AT tends to allometrically scale with LKS∙WKS, and that increases in AT do not keep pace with increases in LTS∙WTS. In addition, using the product of LKS and WKS is better than using only one of the two variables.

2.
Integr Comp Biol ; 64(1): 134-144, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38331421

RESUMO

The proportions in the size of the avian egg albumen, yolk, and shell are crucial for understanding bird survival and reproductive success because their relationships with volume and surface area can affect ecological and life history strategies. Prior studies have focused on the relationship between the albumen and the yolk, but little is known about the scaling relationship between eggshell mass and shape and the mass of the albumen and the yolk. Toward this end, 691 eggs of six precocial species were examined, and their 2-D egg profiles were photographed and digitized. The explicit Preston equation, which assumes bilateral symmetrical geometry, was used to fit the 2-D egg profiles and to calculate surface areas and volumes based on the hypothesis that eggs can be treated as solids of profile revolution. The scaling relationships of eggshell mass (Ms), albumen mass (Ma), and yolk mass (My), as well as the surface area (S), volume (V), and total mass (Mt) were determined. The explicit Preston equation was validated in describing the 2-D egg profiles. The scaling exponents of Ma vs. Ms, My vs. Ms, and My vs. Ma were smaller than unity, indicating that increases in Ma and My fail to keep pace with increases in Ms, and that increases in My fail to keep pace with increases in Ma. Therefore, increases in unit nutrient contents (i.e., the yolk) involve disproportionately larger increases in eggshell mass and disproportionately larger increases in albumen mass. The data also revealed a 2/3-power scaling relationship between S and V for each species, that is, the simple Euclidean geometry is obeyed. These findings help to inform our understanding of avian egg construction and reveal evolutionary interspecific trends in the scaling of egg shape, volume, mass, and mass allocation.


Assuntos
Casca de Ovo , Gema de Ovo , Animais , Gema de Ovo/química , Casca de Ovo/fisiologia , Óvulo/fisiologia , Aves/fisiologia
3.
Ann N Y Acad Sci ; 1524(1): 118-131, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106579

RESUMO

Egg geometry can be described using Preston's equation, which has seldom been used to calculate egg volume (V) and surface area (S) to explore S versus V scaling relationships. Herein, we provide an explicit re-expression of Preston's equation (designated as EPE) to calculate V and S, assuming that an egg is a solid of revolution. The side (longitudinal) profiles of 2221 eggs of six avian species were digitized, and the EPE was used to describe each egg profile. The volumes of 486 eggs from two avian species predicted by the EPE were compared with those obtained using water displacement in graduated cylinders. There was no significant difference in V using the two methods, which verified the utility of the EPE and the hypothesis that eggs are solids of revolution. The data also indicated that V is proportional to the product of egg length (L) and maximum width (W) squared. A 2/3-power scaling relationship between S and V for each species was observed, that is, S is proportional to (LW2 )2/3 . These results can be extended to describe the shapes of the eggs of other species to study the evolution of avian (and perhaps reptilian) eggs.


Assuntos
Aves , Ovos , Humanos , Animais , Matemática , Água
4.
Front Plant Sci ; 14: 1322245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179478

RESUMO

Foliage leaves are essential for plant survival and growth, and how plants allocate biomass to their leaves reveals their economic and ecological strategies. Prior studies have shown that leaf-age significantly influences leaf biomass allocation patterns. However, unravelling the effects of ontogeny on partitioning biomass remains a challenge because it is confounded by the effects of environmental factors. Here, we aim to elucidate whether leaf-age affects the allocation to the lamina and petiole by examining leaves of known age growing in the same general environmental context. We sampled 2698 Photinia serratifolia leaves developing in the same environment from April to November 2021, representing eight leaf-ages (n > 300 for each leaf-age). Petiole and lamina biomass, and lamina area were measured to evaluate the scaling relationships using reduced major axis regression protocols. The bootstrap percentile method was used to determine the differences in scaling exponents among the different leaf-ages. ANOVA with Tukey's HSD was used to compare the ratios of petiole and lamina biomass to lamina area across the leaf-ages. Correlation tests were used to determine if exponents, intercepts, and ratios differed significantly across the different leaf-ages. The data indicated that (i) the ratio of petiole and lamina biomass to lamina area and the scaling exponent of lamina biomass versus lamina area correlate positively with leaf-age, and (ii) the scaling exponent of petiole biomass versus lamina area correlates negatively with leaf-age. Leaf maturation process involves an inverse proportional allocation between lamina and petiole biomass for expanding photosynthetic area. This phenomenon underscores the effect of leaf-age on biomass allocation and the importance of adopting an ontogenetic perspective when entertaining plant scaling theories and unravelling the principles governing shifts in biomass allocation throughout the leaf lifespan.

5.
Plants (Basel) ; 11(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956465

RESUMO

Many geometries of plant organs can be described by the Gielis equation, a polar coordinate equation extended from the superellipse equation, r=a|cosm4φ|n2+|1ksinm4φ|n3-1/n1. Here, r is the polar radius corresponding to the polar angle φ; m is a positive integer that determines the number of angles of the Gielis curve when φ ∈ [0 to 2π); and the rest of the symbols are parameters to be estimated. The pentagonal radial symmetry of calyxes and corolla tubes in top view is a common feature in the flowers of many eudicots. However, prior studies have not tested whether the Gielis equation can depict the shapes of corolla tubes. We sampled randomly 366 flowers of Vinca major L., among which 360 had five petals and pentagonal corolla tubes, and six had four petals and quadrangular corolla tubes. We extracted the planar coordinates of the outer rims of corolla tubes (in top view) (ORCTs), and then fitted the data with two simplified versions of the Gielis equation with k = 1 and m = 5: r=acos54φn2+sin54φn3-1/n1 (Model 1), and r=acos54φn2+sin54φn2-1/n1 (Model 2). The adjusted root mean square error (RMSEadj) was used to evaluate the goodness of fit of each model. In addition, to test whether ORCTs are radially symmetrical, we correlated the estimates of n2 and n3 in Model 1 on a log-log scale. The results validated the two simplified Gielis equations. The RMSEadj values for all corolla tubes were smaller than 0.05 for both models. The numerical values of n2 and n3 were demonstrated to be statistically equal based on the regression analysis, which suggested that the ORCTs of V. major are radially symmetrical. It suggests that Model 1 can be replaced by the simpler Model 2 for fitting the ORCT in this species. This work indicates that the pentagonal or quadrangular corolla tubes (in top view) can both be modeled by the Gielis equation and demonstrates that the pentagonal or quadrangular corolla tubes of plants tend to form radial symmetrical geometries during their development and growth.

6.
Am J Bot ; 109(6): 899-909, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35471633

RESUMO

PREMISE: Across species, main leaf vein density scales inversely with leaf area (A). Yet, minor vein density manifests no clear relationship with respect to A, despite having the potential to provide important insights into the trade-off among the investments in leaf mechanical support, hydraulics, and light interception. METHODS: To examine this phenomenon, the leaves of nine Magnoliaceae leaves were sampled, and the scaling relationships among A and midrib length (ML), total vein length (TVL), total vein area (TVA), total areole area (TAA), and mean areole area (MAA) were determined. The scaling relationships between MAA and areole density (the number of areoles per unit leaf area) and between MAA and A were also analyzed. RESULTS: For five of the nine species, A was proportional to ML2 . For eight of the nine species, TVL and TVA were both proportional to A. The numerical values of the scaling exponents for TAA vs. A were between 1.0 and 1.07 for eight species; i.e., as expected, TAA was isometrically proportional to A. There was no correlation between MAA and A, but MAA scaled inversely with respect to areole density for each species. CONCLUSIONS: The correlation between midrib "density" (i.e., ML/A) and A, and the lack of correlation between total leaf vein density and A result from the A ∝$\propto $ ML2 scaling relationship and the proportional relationship between TVL and A, respectively. Leaves with the same size can have widely varying MAA. Thus, leaf size itself does not directly constrain leaf hydraulic efficiency and redundancy.


Assuntos
Magnoliaceae , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA