Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Aging Dis ; 15(1): 390-407, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307837

RESUMO

Neuroinflammation plays a crucial role in the pathogenesis and progression of Alzheimer's disease (AD). The Sterile Alpha and Toll Interleukin Receptor Motif-containing protein 1 (SARM1) has been shown to promote axonal degeneration and is involved in neuroinflammation. However, the role of SARM1 in AD remains unclear. In this study, we found that SARM1 was reduced in hippocampal neurons of AD model mice. Interestingly, conditional knockout (CKO) of SARM1 in the central nervous system (CNS, SARM1Nestin-CKO mice) delayed the cognitive decline in APP/PS1 AD model mice. Furthermore, SARM1 deletion reduced the Aß deposition and inflammatory infiltration in the hippocampus and inhibited neurodegeneration in APP/PS1 AD model mice. Further investigation into the underlying mechanisms revealed that the signaling of tumor necrosis factor-α (TNF-α) was downregulated in the hippocampus tissues of APP/PS1;SARM1Nestin-CKO mice, thereby alleviating the cognitive decline, Aß deposition and inflammatory infiltration. These findings identify unrecognized functions of SARM1 in promoting AD and reveal the SARM1-TNF-α pathway in AD model mice.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Nestina , Camundongos Transgênicos , Fator de Necrose Tumoral alfa , Doenças Neuroinflamatórias , Transtornos da Memória/genética , Proteínas do Citoesqueleto/genética , Proteínas do Domínio Armadillo/genética
3.
Cell Death Dis ; 13(7): 638, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869039

RESUMO

Autism spectrum disorder (ASD), a group of neurodevelopmental disorder diseases, is characterized by social deficits, communication difficulties, and repetitive behaviors. Sterile alpha and TIR motif-containing 1 protein (SARM1) is known as an autism-associated protein and is enriched in brain tissue. Moreover, SARM1 knockdown mice exhibit autism-like behaviors. However, its specific mechanism in ASD pathogenesis remains unclear. Here we generated parvalbumin-positive interneurons (PVI)-specific conditional SARM1 knockout (SARM1PV-CKO) mice. SARM1PV-CKO male mice showed autism-like behaviors, such as mild social interaction deficits and repetitive behaviors. Moreover, we found that the expression level of parvalbumin was reduced in SARM1PV-CKO male mice, together with upregulated apoptosis-related proteins and more cleaved-caspase-3-positive PVIs, suggesting that knocking out SARM1 may cause a reduction in the number of PVIs due to apoptosis. Furthermore, the expression of c-fos was shown to increase in SARM1PV-CKO male mice, in combination with upregulation of excitatory postsynaptic proteins such as PSD-95 or neuroligin-1, indicating enhanced excitatory synaptic input in mutant mice. This notion was further supported by the partial rescue of autism-like behavior deficits by the administration of GABA receptor agonists in SARM1PV-CKO male mice. In conclusion, our findings suggest that SARM1 deficiency in PVIs may be involved in the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Proteínas do Domínio Armadillo/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Transtorno Autístico/patologia , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Parvalbuminas/metabolismo
4.
Stem Cell Reports ; 17(3): 664-677, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35148842

RESUMO

The horizontal basal cells (HBCs) of olfactory epithelium (OE) serve as reservoirs for stem cells during OE regeneration, through proliferation and differentiation, which is important in recovery of olfactory function. However, the molecular mechanism of regulation of HBC proliferation and differentiation after injury remains unclear. Here, we found that yes-associated protein (YAP) was upregulated and activated in HBCs after OE injury. Deletion of YAP in HBCs led to impairment in OE regeneration and functional recovery of olfaction after injury. Mechanically, YAP was activated by S1P/S1PR2 signaling, thereby promoting the proliferation of HBCs and OE regeneration after injury. Finally, activation of YAP signaling enhanced the proliferation of HBCs and improved functional recovery of olfaction after OE injury or in Alzheimer's disease model mice. Taken together, these results reveal an S1P/S1PR2/YAP pathway in OE regeneration in response to injury, providing a promising therapeutic strategy for OE injury.


Assuntos
Mucosa Olfatória , Células-Tronco , Animais , Diferenciação Celular/fisiologia , Camundongos , Transdução de Sinais , Células-Tronco/metabolismo
5.
Front Psychiatry ; 12: 736094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539472

RESUMO

This study aimed to evaluate the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral pre-frontal cortex (DLPFC) in ameliorating negative symptoms and cognitive impairments in patients with chronic schizophrenia. Fifty-two patients with chronic schizophrenia were randomly assigned to two groups: active rTMS group and sham rTMS group, with existing antipsychotic drugs combined 20 sessions of 10 Hz active/sham rTMS over DLPFC (20 min/session, 5 times/week). The PANSS, RBANS, and SCWT were used to evaluate the clinical symptoms and cognitive functions of the patients. Our results indicated significant improvements in clinical symptoms (PANSS total and subscale scores) and cognitive functions (RBANS total and subscale scores, card 1 and card 3 of the SCWT test) (All p <0.05) after 4-week intervention both in active and sham rTMS group. Moreover, the active rTMS group showed more effective on ameliorating negative symptoms (p = 0.002), immediate memory (p = 0.016) and delayed memory (p = 0.047) compared to the sham group. Interestingly, PANSS negative symptom scores was negatively correlated with RBANS language scores in the real stimulation group (p = 0.046). The study found that the high frequency rTMS stimulation over left DLPFC as a supplement to antipsychotics may have potential benefits in improving clinical symptoms and cognitive functions in patients with chronic schizophrenia.

6.
Aging Cell ; 20(9): e13465, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34415667

RESUMO

Senescent astrocytes accumulate with aging and contribute to brain dysfunction and diseases such as Alzheimer's disease (AD), however, the mechanisms underlying the senescence of astrocytes during aging remain unclear. In the present study, we found that Yes-associated Protein (YAP) was downregulated and inactivated in hippocampal astrocytes of aging mice and AD model mice, as well as in D-galactose and paraquat-induced senescent astrocytes, in a Hippo pathway-dependent manner. Conditional knockout of YAP in astrocytes significantly promoted premature senescence of astrocytes, including reduction of cell proliferation, hypertrophic morphology, increase in senescence-associated ß-galactosidase activity, and upregulation of several senescence-associated genes such as p16, p53 and NF-κB, and downregulation of Lamin B1. Further exploration of the underlying mechanism revealed that the expression of cyclin-dependent kinase 6 (CDK6) was decreased in YAP knockout astrocytes in vivo and in vitro, and ectopic overexpression of CDK6 partially rescued YAP knockout-induced senescence of astrocytes. Finally, activation of YAP signaling by XMU-MP-1 (an inhibitor of Hippo kinase MST1/2) partially rescued the senescence of astrocytes and improved the cognitive function of AD model mice and aging mice. Taken together, our studies identified unrecognized functions of YAP-CDK6 pathway in preventing astrocytic senescence in vitro and in vivo, which may provide further insights and new targets for delaying brain aging and aging-related neurodegenerative diseases such as AD.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Senescência Celular , Quinase 6 Dependente de Ciclina/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Células Cultivadas , Cognição , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
7.
Theranostics ; 11(17): 8480-8499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373754

RESUMO

Rationale: Optic neuritis is one of main symptoms in multiple sclerosis (MS) that causes visual disability. Astrocytes are pivotal regulators of neuroinflammation in MS, and astrocytic yes-associated protein (YAP) plays a critical role in neuroinflammation. Meanwhile, YAP signaling is involved in visual impairment, including glaucoma, retinal choroidal atrophy and retinal detachment. However, the roles and underlying mechanisms of astrocytic YAP in neuroinflammation and demyelination of MS-related optic neuritis (MS-ON) remains unclear. Methods: To assess the functions of YAP in MS-ON, experimental autoimmune encephalomyelitis (EAE, a common model of MS) was established, and mice that conditional knockout (CKO) of YAP in astrocytes, YAPGFAP-CKO mice, were successfully generated. Behavior tests, immunostaining, Nissl staining, Hematoxylin-Eosin (HE) staining, TUNEL staining, Luxol Fast Blue (LFB) staining, electron microscopy (EM), quantitative real-time PCR (qPCR), gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) by RNA sequencing were used to examine the function and mechanism of YAP signaling based on these YAPGFAP-CKO mice and EAE model mice. To further explore the potential treatment of YAP signaling in EAE, EAE mice were treated with various drugs, including SRI-011381 that is an agonist of transforming growth factor-ß (TGF-ß) pathway, and XMU-MP-1 which inhibits Hippo kinase MST1/2 to activate YAP. Results: We found that YAP was significantly upregulated and activated in the astrocytes of optic nerve in EAE mice. Conditional knockout of YAP in astrocytes caused more severe inflammatory infiltration and demyelination in optic nerve, and damage of retinal ganglion cells (RGCs) in EAE mice. Moreover, YAP deletion in astrocytes promoted the activation of astrocytes and microglia, but inhibited the proliferation of astrocytes of optic nerve in EAE mice. Mechanically, TGF-ß signaling pathway was significantly down-regulated after YAP deletion in astrocytes. Additionally, both qPCR and immunofluorescence assays confirmed the reduction of TGF-ß signaling pathway in YAPGFAP-CKO EAE mice. Interestingly, SRI-011381 partially rescued the deficits in optic nerve and retina of YAPGFAP-CKO EAE mice. Finally, activation of YAP signaling by XMU-MP-1 relieved the neuroinflammation and demyelination in optic nerve of EAE mice. Conclusions: These results suggest astrocytic YAP may prevent the neuroinflammatory infiltration and demyelination through upregulation of TGF-ß signaling and provide targets for the development of therapeutic strategies tailored for MS-ON.


Assuntos
Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Proteínas de Sinalização YAP/metabolismo , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias , Nervo Óptico/fisiologia , Neurite Óptica/metabolismo , Neurite Óptica/fisiopatologia , Retina/metabolismo , Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Proteínas de Sinalização YAP/fisiologia
8.
Front Psychiatry ; 12: 676040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163387

RESUMO

The potential correlation between serum lipid profiles and suicidal tendencies has been previously reported, however, it is unclear whether serum lipid profiles have definite relevance to recently attempted suicides in individuals suffering from major depressive disorder (MDD). In this study, the relationship between blood lipids and suicide attempts in first-episode MDD patients in research were used to examine whether there is a connection. The cross-sectional study recruited 580 patients at the time of their first episode, measuring up to the diagnostic standard of MDD. Baseline demographic, clinical data, and blood lipid level data were collected. Depression severity was measured with the Hamilton Depression Rating Scale (HAMD). Our results revealed that the level of TC may be identified as a promising and effective biomarker for first-episode MDD suicide risk, suggesting that screening of serum lipid profiles in depressive patients is essential for suicide prevention.

9.
Am J Cancer Res ; 11(2): 370-388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575077

RESUMO

Glioma is currently the most widespread and malignant primary intracranial tumor, which is characterized by high heterogeneity and high fatality rates. ß-elemene, which is a bioactive compound extracted from a Chinese herb, Curcuma wenyujin, has been reported to reduce resistance of chemotherapeutic drugs and induce apoptosis in tumor cells. However, the role and mechanisms of ß-elemene in glioma senescence remains unknown. In the present study, we found that a low concentration of ß-elemene (10 µg/mL) induced senescence in glioma cells, including reduction of cell proliferation, hypertrophic morphology, increase of senescence-associated ß-galactosidase (SA-ß-Gal) activity, upregulation of several senescence-associated genes such as p16, p53 and NF-κB, and downregulation of Lamin B1. However, a high concentration of ß-elemene induced apoptosis in glioma cells. Treatment with ß-elemene caused a marked down-regulation of Yes-associated protein (YAP) expression in glioma cells, which is a key transcriptional co-activator in multiple cancers. Moreover, cyclin dependent kinase 6 (CDK6), which is a known downstream target of YAP, was decreased in glioma cells that treated with ß-elemene. The overexpression of YAP and CDK6 significantly rescued ß-elemene-induced senescence in glioma cells. Finally, ß-elemene treatment also induced the senescence of glioma cells in glioma xenograft model through inactivation of YAP-CDK6 pathways, which might inhibit the glioma growth. Taken together, these results reveal a previously unknown role of ß-elemene in glioma cell senescence in vitro and in vivo that is associated with YAP-CDK6 signaling pathway, which will enhance our understanding of glioma cell senescence, and provide novel strategies for the treatment of gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...