Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 9(10): 4834-4849, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319906

RESUMO

The infrared spectral region beyond 1.7 µm is of utmost interest for biomedical applications due to strong overtone and combination absorption bands in a variety of important biomolecules such as lactates, urea, glucose, albumin, etc. In this article, we report on recent progress in widely tunable swept-wavelength lasers based on type-I GaSb gain-chip technology, setting a new state-of-the-art in the 1.7 - 2.5 µm range laser sources. We provide an application example for the spectroscopic sensing of several biomolecules in a cuvette as well as an experimental demonstration of a non-invasive in-vivo sensing of human serum albumin through the skin.

2.
ACS Appl Mater Interfaces ; 9(28): 24043-24051, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28656761

RESUMO

This article reports the synthesis and characterization of a series of polystyrenes containing phenylpyridine moieties as side chains. Methanol solubility of these polymers is induced if the relative pyridine content of the overall aromatic units of the side chains is larger than 0.5. This allows for orthogonal processing of multilayered organic light emitting diode (OLED) stacks fabricated from solutions. The polymers show high thermal stability due to their glass-transition temperatures ranging from 136 up to 247 °C. High triplet energies of up to 2.8 eV are obtained by combination of the side-chain aromatic rings in the meta position. The use of the methanol soluble side-chain polymers as an electron transport layer (ETL) is demonstrated in an orthogonally processed three-layer green-emitting OLED stack. When depositing the ETL from methanol, redissolution of the underlying emission layer does not occur.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...