Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 20(3): 192-208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868148

RESUMO

BACKGROUND: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. OBJECTIVE: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. METHODS: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and ß-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C - APT, 1H x 1H - COSY, HSQC and HMBC], IR and mass spectrometry analysis. RESULTS: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. CONCLUSION: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indolquinonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Indolquinonas/síntese química , Indolquinonas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular
2.
J Enzyme Inhib Med Chem ; 29(2): 256-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23477410

RESUMO

Recently the literature described the binding of Haptoglobin (HP) with ecotin, a fold-specific serine-proteases inhibitor with an anticoagulant profile and produced by Escherichia coli. In this work, we used some in silico and in vitro techniques to evaluate HP 3D-fold and its interaction with wild-type ecotin and two variants. Our data showed HP models conserved trypsin fold, in agreement to the in vitro immunological recognition of HP by trypsin antibodies. The analysis of the three ecotin-HP complexes using the mutants RR and TSRR/R besides the wild type revealed several hydrogen bonds between HP and ecotin secondary site. These data are in agreement with the in vitro PAGE assays that showed the HP-RR complex in native gel conditions. Interestingly, the ternary complex interactions varied depending on the inhibitor structure and site-directed mutation. The interaction of HP with TSRR/R involved new residues compared to wild type, which infers a binding energy increase caused by the mutation.


Assuntos
Anticoagulantes/química , Proteínas de Escherichia coli/química , Haptoglobinas/química , Modelos Moleculares , Proteínas Periplásmicas/química , Serina Proteases/química , Sequência de Aminoácidos , Animais , Proteínas de Escherichia coli/genética , Haptoglobinas/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Periplásmicas/genética , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Serina Proteases/genética , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...