Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271905

RESUMO

BackgroundSARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. MethodsNine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. FindingsAbsent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. ConclusionsResults from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262748

RESUMO

What is already known about this topic?The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July--December 2021. What is added by this report?Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July--December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. What are the implications for public health practice?Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446020

RESUMO

Preventing wildlife disease outbreaks is a priority issue for natural resource agencies, and management decisions can be urgent, especially in epidemic circumstances. With the emergence of SARS-CoV-2, wildlife agencies were concerned whether the activities they authorize might increase the risk of viral transmission from humans to North American bats but had a limited amount of time in which to make decisions. We provide a description of how decision analysis provides a powerful framework to analyze and re-analyze complex natural resource management problems as knowledge evolves. Coupled with expert judgment and avenues for the rapid release of information, risk assessment can provide timely scientific information for evolving decisions. In April 2020, the first rapid risk assessment was conducted to evaluate the risk of transmission of SARS-CoV-2 from humans to North American bats. Based on the best available information, and relying heavily on formal expert judgment, the risk assessment found a small possibility of transmission during summer work activities. Following that assessment, additional knowledge and data emerged, such as bat viral challenge studies, that further elucidated the risks of human-to-bat transmission and culminated in a second risk assessment in the fall of 2020. We update the first SARS-CoV-2 risk assessment with new estimates of little brown bat (Myotis lucifugus) susceptibility and new management alternatives, using findings from the prior two risk assessments and other empirical studies. We highlight the strengths of decision analysis and expert judgment not only to frame decisions and produce useful science in a timely manner, but also to serve as a framework to reassess risk as understanding improves. For SARS-CoV-2 risk, new knowledge led to an 88% decrease in the median number of bats estimated to be infected per 1000 encountered when compared to earlier results. The use of facemasks during, or a negative COVID-19 test prior to, bat encounters further reduced those risks. Using a combination of decision analysis, expert judgment, rapid risk assessment, and efficient modes of information distribution, we provide timely science support to decision makers for summer bat work in North America.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20225409

RESUMO

Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...