Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272269

RESUMO

BackgroundMale sex and old age are risk factors for severe COVID-19, but the intersection of sex and aging on antibody responses to SARS-CoV-2 vaccines has not been characterized. MethodsPlasma samples were collected from older adults (75-98 years) before and after three doses of SARS-CoV-2 mRNA vaccination, and from younger adults (18-74 years) post-dose two, for comparison. Antibody binding to SARS-CoV-2 antigens (spike protein [S], S-receptor binding domain [S-RBD], and nucleocapsid [N]) and functional activity against S were measured against the vaccine virus and variants of concern (VOC). ResultsVaccination induced greater antibody titers in older females than males, with both age and frailty associated with reduced antibody responses to vaccine antigens in males, but not females. ACE2 binding inhibition declined more than anti-S or anti-S-RBD IgG in the six months following the second dose (28-fold vs. 12- and 11-fold decreases in titer). The third dose restored functional antibody responses and eliminated disparities caused by sex, age, and frailty in older adults. Responses to the VOC were significantly reduced relative to the vaccine virus, with older males having lower titers to the VOC than females. Older adults had lower responses to the vaccine and VOC viruses than younger adults, with disparities being greater in males than females. ConclusionOlder and frail males may be more vulnerable to breakthrough infections due to low antibody responses before receipt of a third vaccine dose. Promoting third dose coverage in older adults, especially males, is crucial to protecting this vulnerable population. Brief summarySARS-CoV-2 mRNA vaccination induces greater antibody response in older females than males, and age and frailty reduce responses in males only. These effects are eliminated by a third vaccine dose, highlighting the need for third dose coverage, especially in older males.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252149

RESUMO

We evaluated the durability of IgG responses specific to SARS-CoV-2 nucleocapsid (N), receptor binding domain (RBD), and spike (S) antigens in saliva up to 8 months after RT-PCR-confirmed COVID-19 using a multiplex salivary assay. We estimated a half-life of 64 days (d) (95% CI: 49, 80 d) for N, 100 d for RBD (95% CI: 58, 141 d), and 148 d (95% CI: 62, 238 d) for S IgG responses in saliva, consistent with half-life estimates previously reported in blood. Saliva can serve as an alternative to blood to monitor humoral immune responses on a large scale following SARS-CoV-2 infection and vaccination for surveillance and assessment of population immunity.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20220996

RESUMO

Multiple studies have shown loss of SARS-CoV-2 specific antibodies over time after infection, raising concern that humoral immunity against the virus is not durable. If immunity wanes quickly, millions of people may be at risk for reinfection after recovery from COVID-19. However, memory B cells (MBC) could provide durable humoral immunity even if serum neutralizing antibody titers decline. We performed multi-dimensional flow cytometric analysis of S protein receptor binding domain (S-RBD)-specific MBC in cohorts of ambulatory COVID-19 patients with mild disease, and hospitalized patients with moderate to severe disease, at a median of 54 (39-104) days after onset of symptoms. We detected S-RBD-specific class-switched MBC in 13 out of 14 participants, including 4 of the 5 participants with lowest plasma levels of anti-S-RBD IgG and neutralizing antibodies. Resting MBC (rMBC) made up the largest proportion of S-RBD-specific class-switched MBC in both cohorts. FCRL5, a marker of functional memory when expressed on rMBC, was dramatically upregulated on S-RBD-specific rMBC. These data indicate that most SARS-CoV-2-infected individuals develop S-RBD-specific, class-switched MBC that phenotypically resemble germinal center-derived B cells induced by effective vaccination against other pathogens, providing evidence for durable B cell-mediated immunity against SARS-CoV-2 after recovery from mild or severe COVID-19 disease. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=125 SRC="FIGDIR/small/20220996v1_ufig1.gif" ALT="Figure 1"> View larger version (26K): org.highwire.dtl.DTLVardef@89a49borg.highwire.dtl.DTLVardef@95cac0org.highwire.dtl.DTLVardef@320bc1org.highwire.dtl.DTLVardef@1a1da2a_HPS_FORMAT_FIGEXP M_FIG C_FIG

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20112300

RESUMO

Non-invasive SARS-CoV-2 antibody testing is urgently needed to estimate the incidence and prevalence of SARS-CoV-2 infection at the general population level. Precise knowledge of population immunity could allow government bodies to make informed decisions about how and when to relax stay-at-home directives and to reopen the economy. We hypothesized that salivary antibodies to SARS-CoV-2 could serve as a non-invasive alternative to serological testing for widespread monitoring of SARS-CoV-2 infection throughout the population. We developed a multiplex SARS-CoV-2 antibody immunoassay based on Luminex technology and tested 167 saliva and 324 serum samples, including 134 and 118 negative saliva and serum samples, respectively, collected before the COVID-19 pandemic, and 33 saliva and 206 serum samples from participants with RT-PCR-confirmed SARS-CoV-2 infection. We evaluated the correlation of results obtained in saliva vs. serum and determined the sensitivity and specificity for each diagnostic media, stratified by antibody isotype, for detection of SARS-CoV-2 infection based on COVID-19 case designation for all specimens. Matched serum and saliva SARS-CoV-2 antigen-specific IgG responses were significantly correlated. Within the 10-plex SARS-CoV-2 panel, the salivary anti-nucleocapsid (N) protein IgG response resulted in the highest sensitivity for detecting prior SARS-CoV-2 infection (100% sensitivity at [≥]10 days post-SARS-CoV-2 symptom onset). The salivary anti-receptor binding domain (RBD) IgG response resulted in 100% specificity. Among individuals with SARS-CoV-2 infection confirmed with RT-PCR, the temporal kinetics of IgG, IgA, and IgM in saliva were consistent with those observed in serum. SARS-CoV-2 appears to trigger a humoral immune response resulting in the almost simultaneous rise of IgG, IgM and IgA levels both in serum and in saliva, mirroring responses consistent with the stimulation of existing, cross-reactive B cells. SARS-CoV-2 antibody testing in saliva can play a critically important role in large-scale "sero"-surveillance to address key public health priorities and guide policy and decision-making for COVID-19. 40-word summaryA multiplex immunoassay to detect SARS-CoV-2-specific antibodies in saliva performs with high diagnostic accuracy as early as ten days post-COVID-19 symptom onset. Highly sensitive and specific salivary COVID-19 antibody assays could advance broad immuno-surveillance goals in the USA and globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...