Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269877

RESUMO

BackgroundThe SARS-CoV-2 pandemic has generated considerable morbidity and mortality world-wide. While the protection offered by vaccines (and booster doses) offers a method of mitigating the worst effects, by the end of 2021 the distribution of vaccine was highly heterogeneous with some countries achieving over 90% coverage in adults by the end of 2021, while others have less than 2%. In part, this is due to the availability of sufficient vaccine, although vaccine hesitancy also plays a role. MethodsWe use an age-structured model of SARS-CoV-2 dynamics, matched to national data from 152 countries, to investigate the global impact of different vaccine sharing protocols during 2021. We assume a direct relationship between the emergence of variants with increased transmissibility and the cumulative amount of global infection, such that lower global prevalence leads to a lower reproductive number within each country. We compare five vaccine sharing scenarios, from the current situation, through sharing once a particular within-country threshold is reached (e.g. all over 40s have received 2 doses), to full sharing where all countries achieve equal age-dependent vaccine deployment. FindingsCompared to the observed distribution of vaccine uptake, we estimate full vaccine sharing would have generated a 1.5% (PI -0.1 - 4.5%) reduction in infections and a 11.3% (PI 0.6 - 23.2%) reduction in mortality globally by January 2022. The greatest benefit of vaccine sharing would have been experienced by low and middle income countries, who see an average 5.2% (PI 2.5% - 10.4%) infection reduction and 26.8% (PI 24.1% - 31.3%) mortality reduction. Many high income countries, that have had high vaccine uptake (most notably Canada, Chile, UK and USA), suffer increased infections and mortality under most of the sharing protocols investigated, assuming no other counter measures had been taken. However, if reductions in vaccine supply in these countries had been offset by prolonged use of non-pharmaceutical intervention measures, we predict far greater reductions in global infection and mortality of 64.5% (PI 62.6% - 65.4%) and 62.8% (PI 44.0% - 76.3%), respectively. InterpretationBy itself, our results suggest that although more equitable vaccine distribution would have had limited impact on overall infection numbers, vaccine sharing would have substantially reduced global mortality by providing earlier protection of the most vulnerable. If increased vaccine sharing from high income nations had been combined with slower easing of non pharmaceutical interventions to compensate for this, a large reduction in both infection and mortality globally would be expected, confounded by a lower risk of new variants arising.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268131

RESUMO

Quantitative assessments of the recent state of an epidemic and short-term projections into the near future are key public health tools that have substantial policy impacts, helping to determine if existing control measures are sufficient or need to be strengthened. Key to these quantitative assessments is the ability to rapidly and robustly measure the speed with which the epidemic is growing or decaying. Frequently, epidemiological trends are addressed in terms of the (time-varying) reproductive number R. Here, we take a more parsimonious approach and calculate the exponential growth rate, r, using a Bayesian hierarchical model to fit a Gaussian process to the epidemiological data. We show how the method can be employed when only case data from positive tests are available, and the improvement gained by including the total number of tests as a measure of heterogeneous testing effort. Although the methods are generic, we apply them to SARS-CoV-2 cases and testing in England, making use of the available high-resolution spatio-temporal data to determine long-term patterns of national growth, highlight regional growth and spatial heterogeneity.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266079

RESUMO

1The reduction in SARS-CoV-2 transmission from contact tracing applications (apps) depends both on the number of contacts notified and on the probability that those contacts quarantine after notification. Referring to the number of days preceding a positive test that contacts are notified as an apps notification window, we use an epidemiological model of SARS-CoV-2 transmission that captures the profile of infection to consider the trade-off between notification window length and active app-usage. We focus on 5-day and 2-day windows, the lengths used by the NHS COVID-19 app in England and Wales before and after 2nd August 2021, respectively. Short windows can be more effective at reducing transmission if they are associated with higher levels of active app usage and adherence to isolation upon notification, demonstrating the importance of understanding adherence to control measures when setting notification windows for COVID-19 apps.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260271

RESUMO

BackgroundTo control within-school SARS-CoV-2 transmission in England, secondary school pupils have been encouraged to participate in twice weekly mass testing via lateral flow device tests (LFTs) from 8th March 2021, to complement an isolation of close contacts policy in place since 31st August 2020. Strategies involving the isolation of close contacts can lead to high levels of absences, negatively impacting pupils. MethodsWe fit a stochastic individual-based model of secondary schools to both community swab testing data and secondary school absences data. By simulating epidemics in secondary schools from 31st August 2020 until 21st May 2021, we quantify within-school transmission of SARS-CoV-2 in secondary schools in England, the impact of twice weekly mass testing on within-school transmission, and the potential impact of alternative strategies to the isolation of close contacts in reducing pupil absences. FindingsThe within-school reproduction number, Rschool, has remained below 1 from 31st August 2020 until 21st May 2021. Twice weekly mass testing using LFTs have helped to control within-school transmission in secondary schools in England. A strategy of serial contact testing alongside mass testing substantially reduces absences compared to strategies involving isolating close contacts, with only a marginal increase in within-school transmission. InterpretationSecondary school control strategies involving mass testing have the potential to control within-school transmission while substantially reducing absences compared to an isolation of close contacts policy.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258476

RESUMO

Viral reproduction of SARS-CoV-2 provides opportunities for the acquisition of advantageous mutations, altering viral transmissibility, disease severity, and/or allowing escape from natural or vaccine-derived immunity. We use three mathematical models: a parsimonious deterministic model with homogeneous mixing; an age-structured model; and a stochastic importation model to investigate the effect of potential variants of concern (VOCs). Calibrating to the situation in England in May 2021, we find epidemiological trajectories for putative VOCs are wide-ranging and dependent on their transmissibility, immune escape capability, and the introduction timing of a postulated VOC-targeted vaccine. We demonstrate that a VOC with a substantial transmission advantage over resident variants, or with immune escape properties, can generate a wave of infections and hospitalisations comparable to the winter 2020-2021 wave. Moreover, a variant that is less transmissible, but shows partial immune-escape could provoke a wave of infection that would not be revealed until control measures are further relaxed.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258365

RESUMO

The rapid emergence of SARS-CoV-2 mutants with new phenotypic properties is a critical challenge to the control of the ongoing pandemic. B.1.1.7 was monitored in the UK through routine testing and S-gene target failures (SGTF), comprising over 90% of cases by March 2021. Now, the reverse is occurring: SGTF cases are being replaced by an S-gene positive variant, which we associate with B.1.617.2. Evidence from the characteristics of S-gene positive cases demonstrates that, following importation, B.1.617.2 is transmitted locally, growing at a rate higher than B.1.1.7 and a doubling time between 5-14 days. S-gene positive cases should be prioritised for sequencing and aggressive control in any countries in which this variant is newly detected. One-Sentence SummaryThe B.1.617.2 variant of SARS-CoV-2 is replacing B.1.1.7 and emerging as the dominant variant in England, evidenced by sustained local transmission.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20230649

RESUMO

BackgroundAs part of a concerted pandemic response to protect public health, businesses can enact non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to the public. Amendments to working practices can lead to the amount, duration and/or proximity of interactions being changed, ultimately altering the dynamics of disease spread. These modifications could be specific to the type of business being operated. MethodsWe use a data-driven approach to parameterise an individual-based network model for transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The network is comprised of layered contacts to consider the risk of spread in multiple encounter settings (workplaces, households, social and other). We analyse several interventions targeted towards working practices: mandating a fraction of the population to work from home; using temporally asynchronous work patterns; and introducing measures to create COVID-secure workplaces. We also assess the general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate the impact of all these interventions across a variety of relevant metrics. ResultsThe progress of the epidemic can be significantly hindered by instructing a significant proportion of the workforce to work from home. Furthermore, if required to be present at the workplace, asynchronous work patterns can help to reduce infections when compared with scenarios where all workers work on the same days, particularly for longer working weeks. When assessing COVID-secure workplace measures, we found that smaller work teams and a greater reduction in transmission risk reduced the probability of large, prolonged outbreaks. Finally, following isolation guidance and engaging with contact tracing without other measures is an effective tool to curb transmission, but is highly sensitive to adherence levels. ConclusionsIn the absence of sufficient adherence to non-pharmaceutical interventions, our results indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of controls such as contact tracing, we demonstrate the utility of a network model approach to investigate workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease spread.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20163782

RESUMO

The COVID-19 pandemic has brought to the fore the need for policy makers to receive timely and ongoing scientific guidance in response to this recently emerged human infectious disease. Fitting mathematical models of infectious disease transmission to the available epidemiological data provides a key statistical tool for understanding the many quantities of interest that are not explicit in the underlying epidemiological data streams. Of these, the effective reproduction number, R, has taken on special significance in terms of the general understanding of whether the epidemic is under control (R < 1). Unfortunately, none of the epidemiological data streams are designed for modelling, hence assimilating information from multiple (often changing) sources of data is a major challenge that is particularly stark in novel disease outbreaks. Here, focusing on the dynamics of the first-wave (March-June 2020), we present in some detail the inference scheme employed for calibrating the Warwick COVID-19 model to the available public health data streams, which span hospitalisations, critical care occupancy, mortality and serological testing. We then perform computational simulations, making use of the acquired parameter posterior distributions, to assess how the accuracy of short-term predictions varied over the timecourse of the outbreak. To conclude, we compare how refinements to data streams and model structure impact estimates of epidemiological measures, including the estimated growth rate and daily incidence.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20121434

RESUMO

By mid-May, cases of COVID-19 in the UK had been declining for over a month; a multi-phase emergence from lockdown was planned, including a scheduled partial reopening of schools on 1st June. Although evidence suggests that children generally display mild symptoms, the size of the school-age population means the total impact of reopening schools is unclear. Here, we present work from mid-May that focused on the imminent opening of schools and consider what these results imply for future policy. We compared eight strategies for reopening primary and secondary schools in England. Modifying a transmission model fitted to UK SARS-CoV-2 data, we assessed how reopening schools affects contact patterns, anticipated secondary infections and the relative change in the reproduction number, R. We determined the associated public health impact and its sensitivity to changes in social-distancing within the wider community. We predicted reopening schools with half-sized classes or focused on younger children was unlikely to push R above one. Older children generally have more social contacts, so reopening secondary schools results in more cases than reopening primary schools, while reopening both could have pushed R above one in some regions. Reductions in community social-distancing were found to outweigh and exacerbate any impacts of reopening. In particular, opening schools when the reproduction number R is already above one generates the largest increase in cases. Our work indicates that while any school reopening will result in increased mixing and infection amongst children and the wider population, reopening schools alone in June was unlikely to push R above one. Ultimately, reopening decisions are a difficult trade-off between epidemiological consequences and the emotional, educational and developmental needs of children. Into the future, there are difficult questions about what controls can be instigated such that schools can remain open if cases increase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA