Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Mech Behav Biomed Mater ; 138: 105646, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36580857

RESUMO

A fluorescent dye commonly used to image tissues under load (5-DTAF) has previously been shown to stiffen tendons. This study hypothesized that 5-DTAF staining stiffens tendons through reduced fiber sliding, altering the rate at which crimped collagen fibers straighten under load. This was tested by using reflected cross-polarized light microscopy to measure fiber crimp period of cervine extensor digitorum longus tendon specimens under axial load. Specimens were treated with either phosphate buffered saline (negative control), genipin (positive control), or 5-DTAF. In saline treated specimens, crimp period (relative to unstretched) increased at approximately 2.5 times the applied axial strain, indicating substantial fiber sliding. In both 5-DTAF and genipin treated specimens, this ratio was reduced to 1:1, indicating no fiber sliding. These results add further evidence that care should be taken when using 5-DTAF to stain tissue for studying microscale deformations in tissues.


Assuntos
Colágeno , Tendões , Fluoresceínas
2.
Eur Spine J ; 31(4): 865-873, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179651

RESUMO

PURPOSE: Needle injection through the outer annulus fibrosus of the intervertebral disc (IVD) is the most practical approach for delivery of therapeutic agents, which have been shown to potentially leak following needle retraction. The goal of this work was to establish a protocol for quantifying post-injection leakage and test its sensitivity to factors believed to affect needle track geometry. METHODS: A through-puncture defect procedure, followed by controlled injection, was performed on bovine caudal IVDs. Sensitivity to needle size was tested by injection of saline into unconstrained discs with either a 30G, 26G, or 21G hypodermic needle. Sensitivity to axial load was tested by repeated injection via a 26G needle with either no constraint, fixed height, or 10% axial compressive strain. Sensitivity to flexion was tested by applying combined 0.2 MPa compression and 15° of flexion following injection of 5% of disc volume. RESULTS: Needle diameter significantly affected maximum volume prior to leakage, ranging from 34.6 ± 31.9 µL when using 21G to 115.6 ± 23.6 µL when using 30G. While all unloaded discs leaked, axial compression decreased the incidence of leakage events by 50-100% depending on load history. Forward flexion resulted in a 22% incidence of leakage. CONCLUSION: Fluid injected into IVDs is at significant risk of leakage following needle retraction. This risk depends on factors which alter the geometry of the needle track, including needle size, pinching due to axial compression, and stretching as a result of forward flexion.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Fenômenos Biomecânicos , Bovinos , Modelos Animais de Doenças , Humanos , Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/etiologia , Punções/efeitos adversos
3.
Biochem Biophys Rep ; 29: 101194, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35024461

RESUMO

High-resolution experiments revealed that a single myosin-Va motor can transport micron-sized cargo on actin filaments in a stepwise manner. However, intracellular cargo transport is mediated through the dense actin meshwork by a team of myosin Va motors. The mechanism of how motors interact mechanically to bring about efficient cargo transport is still poorly understood. This study describes a stochastic model where a quantitative understanding of the collective behaviors of myosin Va motors is developed based on cargo stiffness. To understand how cargo properties affect the overall cargo transport, we have designed a model in which two myosin Va motors were coupled by wormlike chain tethers with persistence length ranging from 10 to 80 nm and contour length from 100 to 200 nm, and predicted distributions of velocity, run length, and tether force. Our analysis showed that these parameters are sensitive to both the contour and persistence length of cargo. While the velocity of two couple motors is decreased compared to a single motor (from 531 ± 251 nm/s to as low as 318 ± 287 nm/s), the run length (716 ± 563 nm for a single motor) decreased for short, rigid tethers (to as low as 377 ± 187 µm) and increased for long, flexible tethers (to as high as 1.74 ± 1.50 µm). The sensitivity of processive properties to tether rigidity (persistence length) was greatest for short tethers, which caused the motors to exhibit close, yet anti-cooperative coordination. Motors coupled by longer tethers stepped more independently regardless of tether rigidity. Therefore, the properties of the cargo or linkage must play an essential role in motor-motor communication and cargo transport.

4.
J Mech Behav Biomed Mater ; 125: 104953, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763150

RESUMO

Many musculoskeletal tissues are composed primarily of type I collagen, which takes on a periodic crimp morphology that allows large tensile strains in the tissue. The spatial period of collagen fiber crimp may be used to infer internal strains in a tissue and is typically measured using transmitted cross-polarized light imaging of thin slices. However, slicing may induce specimen distortion and precludes mechanical loading of the specimen during imaging. We hypothesized that reflected cross-polarized light imaging of thick tissue explants would yield crimp period measurements comparable to those obtained from transmitted light imaging of thin slices. We further hypothesized that these measurements would be sensitive to applied uniaxial strain in the fiber direction. These hypotheses were tested by imaging both intervertebral disc outer annulus fibrosus and medial collateral ligament tissue specimens. We found that both transmitted and reflected light yielded similar crimp period measurements for intervertebral disc tissue, with an overall average of 43.5 ± 11.5 µm. Reflected light yielded a significantly higher crimp period with lower variance than transmission through thin specimens (54.1 ± 10.6 µm versus 50.4 ± 16.0 µm) in the ligament. Upon application of axial tension, crimp periods in both fibers increased at a rate of approximately three times the applied strain (with 3.17% applied strain yielding a 9.64 ± 4.4% increase in crimp period in the disc and an 11.7 ± 3.7% increase in the ligament), indicating significant fibril sliding. In support of our hypotheses, these findings suggest that reflected cross-polarized light is a suitable method for measuring collagen fiber crimp in musculoskeletal tissues, both statically and under tension.


Assuntos
Colágeno , Microscopia de Polarização
5.
Eur Spine J ; 30(12): 3450-3456, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561728

RESUMO

PURPOSE: The intervertebral disc (IVD) annulus fibrosus (AF) is composed of concentric lamellae with alternating right- and left-handed helically oriented collagen fiber bundles. This arrangement results in anisotropic material properties, which depend on local fiber orientations. Prior measurements of fiber inclination angles in human lumbar and bovine caudal IVDs found a significantly higher inclination angle in the inner AF than outer, though it is currently unknown if this pattern is conserved in smaller mammalian species. Additionally, the physical mechanism behind this pattern remains un-determined. METHODS: In this study, AF fiber angles were measured histologically in murine caudal IVDs and compared to previously published values from bovine caudal IVDs. Fiber angles were also predicted using three theoretical models, including two based on adaptation to internal swelling pressure and one based on vertebral body growth. RESULTS: Fiber angle was found to significantly decrease from 49.5 ± 3.8° in the inner AF to 34.5 ± 6.6° in the outer AF. While steeper than in bovine discs at all locations, the trend with radial position was comparable between species. This trend was best fit by growth-based model and opposite of that predicted by the pressure vessel models. CONCLUSION: Trends in AF fiber orientation are conserved between mammalian species. Modeling results suggest that the AF tissue microstructure is more likely to be driven by adjacent vertebral body growth than adapted for optimal mechanical performance.


Assuntos
Anel Fibroso , Disco Intervertebral , Animais , Anisotropia , Bovinos , Humanos , Região Lombossacral , Camundongos
6.
J Exp Biol ; 223(Pt 20)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32958522

RESUMO

Despite its common use as a laboratory model, little is known about the in vivo forces and moments applied to the bovine caudal intervertebral disc. Such aspects are crucial, as intervertebral disc tissue is known to remodel in response to repeated loading. We hypothesized that the magnitude of loading from muscle contraction during a typical lateral bending motion varies between caudal levels and is accompanied by variations in tissue microstructure. This hypothesis was tested by estimating level-wise forces and bending moments using two independent approaches: a dynamic analytical model of the motion and analysis of muscle cross-sections obtained via computed tomography. Microstructure was assessed by measuring the collagen fiber crimp period in the annulus fibrosus, and composition was assessed via quantitative histology. Both the analytical model and muscle cross-sections indicated peak bending moments of over 3 N m and peak compressive force of over 125 N at the c1c2 level, decreasing distally. There was a significant downward trend from proximal to distal in the outer annulus fibrosus collagen crimp period in the anterior and posterior regions only, suggesting remodeling in response to the highest lateral bending moments. There were no observed trends in composition. Our results suggest that although the proximal discs in the bovine tail are subjected to forces and moments from muscle contraction that are comparable (relative to disc size) to those acting on human lumbar discs, the distal discs are not. The resulting pattern of microstructural alterations suggests that level-wise differences should be considered when using bovine discs as a research model.


Assuntos
Disco Intervertebral , Animais , Fenômenos Biomecânicos , Bovinos , Colágeno , Humanos , Vértebras Lombares , Fenômenos Mecânicos , Estresse Mecânico , Tomografia Computadorizada por Raios X
7.
J Biomech Eng ; 142(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32529213

RESUMO

Engineers and scientists have a key role to play in the creation and implementation of government policy. Policymakers need access to the technical expertise that is critical to our national progress and security; however, this need is often overlooked by engineering students, faculty, and professionals. Even though a substantial fraction of scientists and engineers end up pursuing jobs in government, engineering curricula do not usually provide any background in policy and for many, the policy-making process remains a black box. The good news is that there are some simple ways to make it more accessible and to encourage increased involvement. In this paper, we provide a brief overview of the federal policy-making process and present a collection of classroom learning activities that link policy-making and implementation to science and engineering. These can easily be added to existing courses without wholesale curricular changes. We also suggest professional development activities for engineers at all stages of their careers and discuss ways for engineers to become involved in the policy process. Introducing learning and career development activities focused on science and engineering policy will better prepare engineers to provide needed technical expertise to policymakers. It may also encourage engineers to consider careers in local, state, and federal government.


Assuntos
Engenharia , Tecnologia , Currículo , Políticas , Estudantes
8.
JOR Spine ; 2(3): e1061, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31572978

RESUMO

Needle injection has been indicated as the most practical method of delivering therapeutic agents to the intervertebral disc due to the disc's largely avascular nature. As the disc is characterized by both high stiffness and low permeability, injection requires substantial pressure, which may not relax on practical time scales. Additionally, needle puncture results in a localized disruption to the annulus fibrosus that can provide a leakage pathway for pressurized injectate. We hypothesized that intradiscal injection would result in slow relaxation of injectate pressure, followed by leakage upon needle retraction. This hypothesis was tested via controlled injection of fluorescently labeled saline into bovine caudal discs via a 21 gauge needle. Injections were performed with 10% of total disc volume injected at 3%/s followed by a 4-minute dwell. An analytical poroelastic model was calibrated to the experimental data and used to estimate injectate delivery with time. Experimental results confirmed both pressurization (with a peak of 199 ± 45 kPa) and slow recovery (final pressure of 81 ± 23 kPa). Injectate leakage through the needle puncture was verified following needle retraction in all samples. Histological sections of the discs displayed a clear defect at each disc's injection site with strong fluorescent labeling indicating a leakage pathway. The modeling results suggest that less than one-fourth of the injected volume was absorbed by the tissue in 4 minutes. Taken together these results suggest that needle injection is a feasible, albeit inefficient method for delivery of therapeutic agents into the intervertebral disc. Particular care should be taken to aspirate un-absorbed injectate prior to needle retraction to prevent leakage and exposure of surrounding tissues.

9.
Biomech Model Mechanobiol ; 18(5): 1363-1369, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30980210

RESUMO

There is a growing interest in the development of patient-specific finite element models of the human lumbar spine for both the assessment of injury risk and the development of treatment strategies. A current challenge in implementing these models is that the outer annulus fibrosus of the disc is composed of concentric sheets of aligned collagen fibers, the helical angles of which vary spatially. In finite element models, fiber angle is typically assumed to be constant, based on average experimental measurements from a small number of locations. The present study hypothesized that the full spatial distribution of fiber angles in the annulus fibrosus may be predicted for any disc geometry by assuming growth from a thin cylinder with constant fiber angle. This hypothesis was tested by developing an analytical model of disc growth and calibrating it with fiber angle measurements of adult bovine caudal discs. The calibrated model was then run on a representative human lumbar disc geometry. The model was able to accurately predict fiber angle distributions in both the experimental bovine caudal disc measurements and literature-reported human lumbar disc measurements. Despite its theoretical basis in development, the model requires only mature state geometry, making it practical for implementation in patient-specific finite element analyses, in which disc geometry is obtained from clinical imaging.


Assuntos
Anel Fibroso/anatomia & histologia , Disco Intervertebral/anatomia & histologia , Modelos Biológicos , Animais , Bovinos , Humanos , Vértebras Lombares/anatomia & histologia
10.
J Biomech Eng ; 141(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30673069

RESUMO

Predicting the mechanical behavior of the intervertebral disk (IVD) in health and in disease requires accurate spatial mapping of its compressive mechanical properties. Previous studies confirmed that residual strains in the annulus fibrosus (AF) of the IVD, which result from nonuniform extracellular matrix deposition in response to in vivo loads, vary by anatomical regions (anterior, posterior, and lateral) and zones (inner, middle, and outer). We hypothesized that as the AF is composed of a nonlinear, anisotropic, viscoelastic material, the state of residual strain in the transverse plane would influence the apparent values of axial compressive properties. To test this hypothesis, axial creep indentation tests were performed, using a 1.6 mm spherical probe, at nine different anatomical locations on bovine caudal AFs in both the intact (residual strain present) and strain relieved states. The results showed a shift toward increased spatial homogeneity in all measured parameters, particularly instantaneous strain. This shift was not observed in control AFs, which were tested twice in the intact state. Our results confirm that time-dependent axial compressive properties of the AF are sensitive to the state of residual strain in the transverse plane, to a degree that is likely to affect whole disk behavior.

11.
J Biomech ; 74: 86-91, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29705348

RESUMO

Loss of charged proteoglycans in the knee meniscus, which aid in the support of compressive loads by entraining water, is an effect of degeneration and is often associated with osteoarthritis. In healthy menisci, proteoglycan content is highest in the inner white zone and decreases towards the peripheral red zone. We hypothesized that loss of proteoglycans would reduce both osmotic swelling and compressive stiffness, spatially localized to the avascular white zone of the meniscus. This hypothesis was tested by targeted enzymatic digestion of proteoglycans using hyaluronidase in intact cervine medial menisci. Mechanics were quantified by creep indentation on the femoral surface. Osmotic swelling changes were assessed by measuring collagen fiber crimp period in the radial-axial plane in the lamellar layer along both the tibial and femoral contacting surfaces. All measurements were made in the inner, middle, and outer zones of the anterior, central, and posterior regions. Mechanical measurements showed variation in creep behavior with anatomical location, along with spatially uniform decreases in viscosity (average of 21%) and creep stiffness (average of 15%) with hyaluronidase treatment. Lamellar collagen crimp period was significantly decreased (average of 27%) by hyaluronidase, indicating a decrease in osmotic swelling, with the largest decreases seen in locations with the highest proteoglycan content. Taken together, these results suggest that while proteoglycans have localized effects on meniscus swelling, the resulting effect on compressive properties is distributed throughout the tissue.


Assuntos
Meniscos Tibiais/fisiologia , Proteoglicanas/fisiologia , Animais , Colágeno/fisiologia , Cervos , Edema/fisiopatologia , Feminino , Fêmur/fisiologia , Hialuronoglucosaminidase/metabolismo , Masculino , Tíbia/fisiologia , Viscosidade
12.
JOR Spine ; 1(4): e1038, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31463453

RESUMO

Lumbar spinal column laxity contributes to instability, increasing the risk of low back injury and pain. Until the laxity increase due to the cyclic loads of daily living can be quantified, the associated injury risk cannot be predicted clinically. This work cyclically loaded 5-vertebra lumbar motion segments (7 skeletally-mature cervine specimens, 5 osteoporotic human cadaver specimens) for 20 000 cycles of low-load low-angle (15°) flexion. The normalized neutral zone lengths and slopes of the load-displacement hysteresis loops showed a similar increase in spinal column laxity across species. The intervertebral kinematics also changes with cyclic loading. Differences in the location and magnitude of surface strain on the vertebral bodies (0.34% ± 0.11% in the cervine specimens, and 3.13% ± 1.69% in the human cadaver specimens) are consistent with expected fracture modes in these populations. Together, these results provide biomechanical evidence of spinal column damage during high-cycle low-load low-angle loading.

13.
J Mech Behav Biomed Mater ; 68: 232-238, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28232297

RESUMO

The annulus fibrosus (AF) of the intervertebral disc (IVD) serves the dual roles of containing hydrostatic pressure from the inner nucleus pulposus (NP) and allowing flexible connection between adjacent vertebral bodies. Previous work has indicated that in the unloaded state, the AF is under a state of residual circumferential strain that, on average, is comparable to that which is believed to reduce peak stresses in other pressure containing organs. The complex in-vivo loading of the IVD, however, led us to hypothesize that variations with anatomical region should also exist. Residual strains were measured by imaging bovine caudal IVDs at both macro and micro scales in both the intact state (under residual strain) and opened into anterior, posterior, and lateral quadrants (residual strains relieved). Calculation of macro scale residual strains using changes in lamellar arc length and thickness confirmed circumferential tension (anterior: 0.63±2.1%, lateral: 8.3±1.5%, posterior: 4.4±2.1%) and radial compression (anterior: 12.4±5.8%, lateral: 11.120±2.8%, posterior: 4.8±4.2%) around the outer zone of the AF. The inner zone, however, had residual circumferential strains ranging from 28.7±3.4% compression in the anterior region to 3.4±3% tension in the posterior region, with radial strains of 9.7±5.5% tension and 0.2±4.4% compression respectively. This pattern of residual circumferential strain was corroborated at the microscale by comparing the crimp period of collagen fiber bundles in the intact and open states. The results of this study point toward a complex pattern of residual strains in the AF, which develop in response to stresses from both NP pressurization and bending movements.


Assuntos
Anel Fibroso/fisiologia , Estresse Mecânico , Animais , Bovinos , Degeneração do Disco Intervertebral
14.
Ann Biomed Eng ; 45(4): 1093-1100, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27718092

RESUMO

Animal joints are valuable proxies for those of humans in biomechanical studies, however commonly used quadruped knees differ greatly from human knees in scale and morphometry. To test the suitability of the cervine stifle joint (deer knee) as a laboratory model, gross morphometry, ACL cross section, and ACL rupture strength were measured and compared to values previously reported for the knees of humans and commonly studied animals. Twelve knee joints from wild white-tailed deer were tested. Several morphometry parameters, including bicondylar width (53.5 ± 3.0 mm) and notch width (14.7 ± 2.5 mm), showed a high degree of similarity to those of the human knee, while both medial (16.7 ± 2.1°) and lateral (17.6 ± 4.7°) tibial slopes were steeper than in humans but less steep than other quadrupeds. The median ACL rupture force (2054 N, 95% CI 2017-2256 N), mean stiffness (260 ± 166 N/mm), mean length (33 ± 7 mm), and mean cross sectional area (44.8 ± 18.3 mm2) were also comparable to previously reported values for human knees. In our limited sample size, no significant sexual dimorphism in strength or morphometry was observed (p ≥ 0.05 for all parameters), though female specimens generally had steeper tibial slopes (lateral: p = 0.52, medial: p = 0.07). Our results suggest that the deer knee may be a suitable model for ex vivo studies of ACL rupture and repair.


Assuntos
Cervos/anatomia & histologia , Cervos/fisiologia , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Animais , Feminino , Humanos , Masculino
15.
J Biomech ; 49(9): 1477-1481, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27036072

RESUMO

Ring apophysis fractures of the spine occur in physically-active adolescents causing low back pain and the potential for chronic pain. Many of these fractures occur without memorable trauma, suggesting that the fractures occur during everyday movements and activities. The benign nature of this poorly understood potential mechanism of injury hampers appropriate diagnosis and early treatment. The purpose of this study was to establish an ex-vivo model of ring apophysis fracture and demonstrate that these fractures can be initiated by repetitive non-traumatic loading. Six 5-vertebra cervine lumbar (L1-L5) motion segments were cyclically loaded in low-angle low-load flexion (to 15° flexion, with peak load of 230±50N), a representative movement component of daily activities for both human and deer lumbar spines. Pinned end conditions replicated physiologically realistic loading. Ring apophysis fractures were created under low-load low-angle conditions in healthy vertebrae of similar bone mineral density and a similar degree of skeletal maturity to adolescent humans. All specimens developed ring apophysis fractures, some as early as 1400 cycles. The load-displacement data, and hysteresis loops during the cyclic loading, suggest that the fractures occurred gradually, i.e., without trauma. The ease at which these fractures were created suggests that ring apophysis fractures may be more prevalent than current diagnosis rates. Therefore, clinically, healthcare providers should include the potential for ring apophysis fracture in the differential diagnosis of all physically-active adolescents who present with back pain.


Assuntos
Fraturas da Coluna Vertebral/etiologia , Fraturas da Coluna Vertebral/fisiopatologia , Animais , Densidade Óssea , Cervos , Modelos Animais de Doenças , Vértebras Lombares/fisiopatologia , Movimento , Amplitude de Movimento Articular , Suporte de Carga
16.
Proc Natl Acad Sci U S A ; 113(12): 3239-44, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26908872

RESUMO

During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Animais , Proteínas de Transporte/química , Camundongos , Fosforilação , Conformação Proteica , Relação Estrutura-Atividade
17.
J Biophys ; 2015: 465693, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770194

RESUMO

Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network.

18.
Pflugers Arch ; 466(3): 439-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24407948

RESUMO

Cardiac myosin-binding protein C is a key regulator of cardiac contractility and is capable of both activating the thin filament to initiate actomyosin motion generation and governing maximal sliding velocities. While MyBP-C's C terminus localizes the molecule within the sarcomere, the N terminus appears to confer regulatory function by binding to the myosin motor domain and/or actin. Literature pertaining to how MyBP-C binding to the myosin motor domain and or actin leads to MyBP-C's dual modulatory roles that can impact actomyosin interactions are discussed.


Assuntos
Actomiosina/metabolismo , Proteínas de Transporte/metabolismo , Contração Miocárdica , Sarcômeros/metabolismo , Animais , Proteínas de Transporte/química , Humanos , Sarcômeros/fisiologia
19.
J Magn Reson Imaging ; 38(6): 1402-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23633131

RESUMO

PURPOSE: To establish relationships between quantitative MRI (qMRI) and biomechanical parameters in order to help inform and interpret alterations of human intervertebral discs (IVD) with different grades of degeneration. MATERIALS AND METHODS: The properties of the nucleus pulposus (NP) and annulus fibrosus (AF) of each IVD of 10 lumbar spines (range, 32-77 years) were analyzed by qMRI (relaxation times T1 and T2, magnetization transfer ratio [MTR], and apparent diffusion coefficient [ADC]), and tested in confined compression and dynamic shear. RESULTS: T1 and T2 significantly decreased in both the NP and AF with increasing degeneration grades while the MTR increased significantly with grade 4. In contrast to the other qMRI parameters, the ADC had a tendency to decrease with increasing grade. Disc degeneration caused a decrease in the aggregate modulus, hydraulic permeability and shear modulus magnitude along with an increase in phase angle in the AF. In contrast, disc degeneration of NPs demonstrated decreases in shear modulus and phase angle. CONCLUSION: Our studies indicate that qMRI can be used as a noninvasive diagnostic tool in the detection of IVD properties with the potential to help interpret and detect early, middle, and late stages of degeneration. QMRI of human IVD can therefore become a very important diagnostic assessment tool in determining the functional state of the disc.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/fisiopatologia , Disco Intervertebral/patologia , Disco Intervertebral/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Força Compressiva , Módulo de Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Permeabilidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Resistência ao Cisalhamento
20.
Spine J ; 13(3): 243-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23369494

RESUMO

BACKGROUND CONTEXT: Degeneration and injuries of the intervertebral disc (IVD) result in large alterations in biomechanical behaviors. Repair strategies using biomaterials can be optimized based on the biomechanical and biological requirements of the IVD. PURPOSE: To review the present literature on the effects of degeneration, simulated degeneration, and injury on biomechanics of the IVD, with special attention paid to needle puncture injuries, which are a pathway for diagnostics and regenerative therapies and the promising biomaterials for disc repair with a focus on how those biomaterials may promote biomechanical repair. STUDY DESIGN: A narrative review to evaluate the role of biomechanics on disc degeneration and regenerative therapies with a focus on what biomechanical properties need to be repaired and how to evaluate and accomplish such repairs using biomaterials. Model systems for the screening of such repair strategies are also briefly described. METHODS: Articles were selected from two main PubMed searches using keywords: intervertebral AND biomechanics (1,823 articles) and intervertebral AND biomaterials (361 articles). Additional keywords (injury, needle puncture, nucleus pressurization, biomaterials, hydrogel, sealant, tissue engineering) were used to narrow the articles down to the topics most relevant to this review. RESULTS: Degeneration and acute disc injuries have the capacity to influence nucleus pulposus (NP) pressurization and annulus fibrosus (AF) integrity, which are necessary for an effective disc function and, therefore, require repair. Needle injection injuries are of particular clinical relevance with the potential to influence disc biomechanics, cellularity, and metabolism, yet these effects are localized or small and more research is required to evaluate and reduce the potential clinical morbidity using such techniques. NP replacement strategies, such as hydrogels, are required to restore the NP pressurization or the lost volume. AF repair strategies including cross-linked hydrogels, fibrous composites, and sealants offer promise for regenerative therapies to restore AF integrity. Tissue engineered IVD structures, as a single implantable construct, may promote greater tissue integration due to the improved repair capacity of the vertebral bone. CONCLUSIONS: IVD height, neutral zone characteristics, and torsional biomechanics are sensitive to specific alterations in the NP pressurization and AF integrity and must be addressed for an effective functional repair. Synthetic and natural biomaterials offer promise for NP replacement, AF repair, as an AF sealant, or whole disc replacement. Meeting mechanical and biological compatibilities are necessary for the efficacy and longevity of the repair.


Assuntos
Degeneração do Disco Intervertebral/cirurgia , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Fenômenos Biomecânicos/fisiologia , Humanos , Degeneração do Disco Intervertebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA