Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 3907-3917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708183

RESUMO

Background: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods: We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results: We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion: It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.


Assuntos
Antivirais , Lignanas , Proteínas Recombinantes , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Proteínas Recombinantes/química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Animais , Nanopartículas/química
2.
Biomark Res ; 12(1): 38, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594765

RESUMO

BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.

3.
BMC Microbiol ; 23(1): 207, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37528354

RESUMO

BACKGROUND: The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). RESULTS: The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. CONCLUSIONS: Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
4.
Mater Today Bio ; 19: 100570, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36824411

RESUMO

The combination of in ovo and ex ovo chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the in vivo performance has barely scratched the surface. Herein, we used CAM assay as in vivo model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft. PtNPs showed a higher efficiency to inhibit the tumor growth and metastasis compared to CDDP. The amino acids profiling in the MDA-MB-231 â€‹cells revealed that the PtNPs had an overall depleting effect on the amino acids content. Noteworthy, more side effects to amino acid metabolism were deduced from the depletion of the amino acids in tumor, brain, and liver upon CDDP treatment. Different sets of enzymes of the tricarboxylic acid (TCA) cycle were targeted by PtNPs and CDDP, and while mRNA encoding multiple enzymes was downregulated by PtNPs, the treatment with CDDP affected only two TCA enzymes, indicating a different mechanism of action. Taken together, CAM assay represents and invaluable model, demonstrating the PtNPs capability of repressing angiogenesis, decrease amino acid contents and disrupt the TCA cycle.

5.
ACS Nano ; 17(1): 146-156, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36538781

RESUMO

Autonomous microrobots are at the forefront of biomedical research as they are expected to be applied for specific tasks at the intracellular level such as cargo delivery, sensing, molecular manipulation, among others. Here, we report on a preparation of microrobots based on quinacridone and indigo, which are members of the organic hydrogen-bonded pigment family. The microrobots were fabricated by asymmetric platinum deposition on corresponding quinacridone and indigo microparticles that possessed a homogeneous size and shape distribution. The microrobots exhibited autonomous locomotion in the presence of hydrogen peroxide, which was further supported by UV irradiation. The organic pigment-based microrobots were studied in the presence of mouse colorectal carcinoma cells, and it was observed that they were internalized into the cells. Internalization was visualized using confocal laser scanning microscopy. This study reveals the possibility of fabricating hydrogen-bonded organic pigment-based microrobots for biomedical applications by employing the principles of nanoarchitectonics.


Assuntos
Corantes , Neoplasias , Animais , Camundongos , Índigo Carmim , Ligação de Hidrogênio , Platina
6.
Bioact Mater ; 20: 489-500, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35800405

RESUMO

Although the general concept of nanotechnology relies on exploitation of size-dependent properties of nanoscaled materials, the relation between the size/morphology of nanoparticles with their biological activity remains not well understood. Therefore, we aimed at investigating the biological activity of Se nanoparticles, one of the most promising candidates of nanomaterials for biomedicine, possessing the same crystal structure, but differing in morphology (nanorods vs. spherical particles) and aspect ratios (AR, 11.5 vs. 22.3 vs. 1.0) in human cells and BALB/c mice. Herein, we report that in case of nanorod-shaped Se nanomaterials, AR is a critical factor describing their cytotoxicity and biocompatibility. However, spherical nanoparticles (AR 1.0) do not fit this statement and exhibit markedly higher cytotoxicity than lower-AR Se nanorods. Beside of cytotoxicity, we also show that morphology and size substantially affect the uptake and intracellular fate of Se nanomaterials. In line with in vitro data, in vivo i.v. administration of Se nanomaterials revealed the highest toxicity for higher-AR nanorods followed by spherical nanoparticles and lower-AR nanorods. Moreover, we revealed that Se nanomaterials are able to alter intracellular redox homeostasis, and affect the acidic intracellular vesicles and cytoskeletal architecture in a size- and morphology-dependent manner. Although the tested nanoparticles were produced from the similar sources, their behavior differs markedly, since each type is promising for several various application scenarios, and the presented testing protocol could serve as a concept standardizing the biological relevance of the size and morphology of the various types of nanomaterials and nanoparticles.

7.
Front Oncol ; 12: 986045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212465

RESUMO

Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.

9.
Front Oncol ; 11: 707366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540673

RESUMO

PURPOSE: The chick chorioallantoic membrane (CAM) assay can provide an alternative versatile, cost-effective, and ethically less controversial in vivo model for reliable screening of drugs. In the presented work, we demonstrate that CAM assay (in ovo and ex ovo) can be simply employed to delineate the effects of cisplatin (CDDP) and ellipticine (Elli) on neuroblastoma (Nbl) cells in terms of their growth and metastatic potential. METHODS: The Nbl UKF-NB-4 cell line was established from recurrent bone marrow metastases of high-risk Nbl (stage IV, MYCN amplification, 7q21 gain). Ex ovo and in ovo CAM assays were optimized to evaluate the antimetastatic activity of CDDP and Elli. Immunohistochemistry, qRT-PCR, and DNA isolation were performed. RESULTS: Ex ovo CAM assay was employed to study whether CDDP and Elli exhibit any inhibitory effects on growth of Nbl xenograft in ex ovo CAM assay. Under the optimal conditions, Elli and CDDP exhibited significant inhibition of the size of the primary tumor. To study the efficiency of CDDP and Elli to inhibit primary Nbl tumor growth, intravasation, and extravasation in the organs, we adapted the in ovo CAM assay protocol. In in ovo CAM assay, both studied compounds (CDDP and Elli) exhibited significant (p < 0.001) inhibitory activity against extravasation to all investigated organs including distal CAM. CONCLUSIONS: Taken together, CAM assay could be a helpful and highly efficient in vivo approach for high-throughput screening of libraries of compounds with expected anticancer activities.

10.
Adv Sci (Weinh) ; 8(19): e2101301, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34369099

RESUMO

Microscale self-propelled robots show great promise in the biomedical field and are the focus of many researchers. These tiny devices, which move and navigate by themselves, are typically based on inorganic microstructures that are not biodegradable and potentially toxic, often using toxic fuels or elaborate external energy sources, which limits their real-world applications. One potential solution to these issues is to go back to nature. Here, the authors use high-speed Aqua Sperm micromotors obtained from North African catfish (Clarias gariepinus, B. 1822) to destroy bacterial biofilm. These Aqua Sperm micromotors use water-induced dynein ATPase catalyzed adenosine triphosphate (ATP) degradation as biocompatible fuel to trigger their fast speed and snake-like undulatory locomotion that facilitate biofilm destruction in less than one minute. This efficient biofilm destruction is due to the ultra-fast velocity as well as the head size of Aqua Sperm micromotors being similar to bacteria, which facilitates their entry to and navigation within the biofilm matrix. In addition, the authors demonstrate the real-world application of Aqua Sperm micromotors by destroying biofilms that had colonized medical and laboratory tubing. The implemented system extends the biomedical application of Aqua Sperm micromotors to include hybrid robots for fertilization or cargo tasks.


Assuntos
Biofilmes , Biomimética/instrumentação , Contaminação de Equipamentos/prevenção & controle , Microtecnologia/instrumentação , Robótica/instrumentação , Espermatócitos/química , Animais , Peixes-Gato , Desenho de Equipamento , Masculino
11.
Int J Nanomedicine ; 16: 4431-4449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234435

RESUMO

PURPOSE: The present study deals with the in vitro evaluation of the potential use of coordination compound-based zinc oxide (ZnO) nanoparticles (NPs) for the treatment of triple negative breast cancer cells (TNBrCa). As BrCa is one of the most prevalent cancer types and TNBrCa treatment is difficult due to poor prognosis and a high metastasis rate, finding a more reliable treatment option should be of the utmost interest. METHODS: Prepared by reacting zinc carboxylates (formate, acetate, propionate, butyrate, isobutyrate, valerate) and hexamethylenetetramine, 4 distinct coordination compounds were further subjected to two modes of conversion into ZnO NPs - ultrasonication with oleic acid or heating of pure precursors in an air atmosphere. After detailed characterization, the resulting ZnO NPs were subjected to in vitro testing of cytotoxicity toward TNBrCa and normal breast epithelial cells. Further, their biocompatibility was evaluated. RESULTS: The resulting ZnO NPs provide distinct morphological features, size, biocompatibility, and selective cytotoxicity toward TNBrCa cells. They internalize into two types of TNBrCa cells and imbalance their redox homeostasis, influencing their metabolism, morphology, and ultimately leading to their death via apoptosis or necrosis. CONCLUSION: The crucial properties of ZnO NPs seem to be their morphology, size, and zinc content. The ZnO NPs with the most preferential values of all three properties show great promise for a future potential use in the therapy of TNBrCa.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/patologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
12.
ACS Nano ; 15(8): 12899-12910, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34282903

RESUMO

Transfection is based on nonviral delivery of nucleic acids or proteins into cells. Viral approaches are being used; nevertheless, their translational capacity is nowadays decreasing due to persistent fear of their safety, therefore creating space for the field of nanotechnology. However, nanomedical approaches introducing static nanoparticles for the delivery of biologically active molecules are very likely to be overshadowed by the vast potential of nanorobotics. We hereby present a rapid nonviral transfection of protein into a difficult-to-transfect prostate cancer cell line facilitated by chemically powered rectangular virus-sized (68 nm × 33 nm) nanorobots. The enhanced diffusion of these biocompatible nanorobots is the key to their fast internalization into cells, happening in a matter of minutes and being up to 6-fold more efficient compared to static nanorobots in a nonfueled environment. The Au/Ag plasmonic nature of these nanorobots makes them simply traceable and allows for their detailed subcellular localization. Protein transfection mediated by such nanorobots is an important step forward, challenging the field of nanomedicine and having potential in future translational medical research.


Assuntos
Nanopartículas , Ácidos Nucleicos , Transfecção , Nanotecnologia , Nanomedicina , Nanopartículas/química
13.
Sci Rep ; 11(1): 5496, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750814

RESUMO

Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metalotioneína 3/biossíntese , Proteínas de Neoplasias/biossíntese , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metalotioneína 3/genética , Proteínas de Neoplasias/genética
14.
Int J Nanomedicine ; 16: 1-14, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33442247

RESUMO

INTRODUCTION: The present study reports on examination of the effects of encapsulating the tyrosine kinase inhibitors (TKIs) vandetanib and lenvatinib into a biomacromolecular ferritin-based delivery system. METHODS: The encapsulation of TKIs was performed via two strategies: i) using an active reversible pH-dependent reassembly of ferritin´s quaternary structure and ii) passive loading of hydrophobic TKIs through the hydrophobic channels at the junctions of ferritin subunits. After encapsulation, ferritins were surface-functionalized with folic acid promoting active-targeting capabilities. RESULTS: The physico-chemical and nanomechanical analyses revealed that despite the comparable encapsulation efficiencies of both protocols, the active loading affects stability and rigidity of ferritins, plausibly due to their imperfect reassembly. Biological experiments with hormone-responsive breast cancer cells (T47-D and MCF-7) confirmed the cytotoxicity of encapsulated and folate-targeted TKIs to folate-receptor positive cancer cells, but only limited cytotoxic effects to healthy breast epithelium. Importantly, the long-term cytotoxic experiments revealed that compared to the pH-dependent encapsulation, the passively-loaded TKIs exert markedly higher anticancer activity, most likely due to undesired influence of harsh acidic environment used for the pH-dependent encapsulation on the TKIs' structural and functional properties. CONCLUSION: Since the passive loading does not require a reassembly step for which acids are needed, the presented investigation serves as a solid basis for future studies focused on encapsulation of small hydrophobic molecules.


Assuntos
Sistemas de Liberação de Medicamentos , Ferritinas/química , Ácido Fólico/química , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Quinolinas/farmacologia , Animais , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Clonais , Difusão , Portadores de Fármacos/química , Cavalos , Humanos , Concentração de Íons de Hidrogênio , Compostos de Fenilureia/química , Piperidinas/química , Quinazolinas/química , Quinolinas/química , Propriedades de Superfície
15.
Front Microbiol ; 11: 1963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983007

RESUMO

An inexorable switch from antibiotics has become a major desideratum to overcome antibiotic resistance. Bacteriocin from Lactobacillus casei, a cardinal probiotic was used to design novel antibacterial peptides named as Probiotic Bacteriocin Derived and Modified (PBDM) peptides (PBDM1: YKWFAHLIKGLC and PBDM2: YKWFRHLIKKLC). The loop-shaped 3D structure of peptides was characterized in silico via molecular dynamics simulation as well as biophysically via spectroscopic methods. Thereafter, in vitro results against multidrug resistant bacterial strains and hospital samples demonstrated the strong antimicrobial activity of PBDM peptides. Further, in vivo studies with PBDM peptides showed downright recovery of balb/c mice from Vancomycin Resistant Staphylococcus aureus (VRSA) infection to its healthy condition. Thereafter, in vitro study with human epithelial cells showed no significant cytotoxic effects with high biocompatibility and good hemocompatibility. In conclusion, PBDM peptides displayed significant antibacterial activity against certain drug resistant bacteria which cause infections in human beings. Future analysis are required to unveil its mechanism of action in order to execute it as an alternative to antibiotics.

16.
J Colloid Interface Sci ; 580: 30-48, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679365

RESUMO

In the present study, the thermal decomposition of citric acid in the presence of biogenic amine was used to synthesize four different functionalized carbon quantum dots (CQDs), namely, histamine-(HCQDs), putrescine-(PCQDs), cadaverine-(CCQDs) and spermine-(SCQDs). The thermal decomposition of the precursors resulted in a decrease in stability and the formation of surface amides via a cross-linking process between the carboxyl and amine groups. The deposition of biogenic amines was confirmed by a structural characterization of the synthesized CQDs. The resulting CQDs, with a net zero charge, exhibited excellent stability in environments with different pH values. Through a set of different cytotoxicity tests, the absence of gene mutations, apoptosis, necrosis or disruption in cell membranes revealed the high biocompatibility of the CQDs. The antimicrobial activity of the synthesized CQDs was investigated against different bacterial species (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumonia). We determined the growth kinetics, production of reactive oxygen species (ROS), cell viability and changes in membrane integrity by scanning electron microscopy (SEM). The minimal inhibitory concentrations (MICs) for S. aureus ranged from 3.4 to 6.9 µg/mL. Regarding E.coli and K. pneumonia, all CQD formulations reduced growth, and the MICs were determined for CCQDs and HCQDs (6.9-19.4 µg/mL). The antibacterial activity mechanism was attributed to the oxidative stress generated after CQD treatment, which resulted in the destabilization of the bacterial membrane. The bacterial permeability to propidium iodide indicated a change in membrane integrity, and the effect of CQDs on the morphology of the bacterial cells was evidenced by SEM.


Assuntos
Pontos Quânticos , Aminas , Antibacterianos/farmacologia , Carbono , Staphylococcus aureus
17.
J Nanobiotechnology ; 18(1): 95, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660596

RESUMO

BACKGROUND: Currently, the diagnosis and treatment of neuroblastomas-the most frequent solid tumors in children-exploit the norepinephrine transporter (hNET) via radiolabeled norepinephrine analogs. We aim to develop a nanomedicine-based strategy towards precision therapy by targeting hNET cell-surface protein with hNET-derived homing peptides. RESULTS: The peptides (seq. GASNGINAYL and SLWERLAYGI) were shown to bind high-resolution homology models of hNET in silico. In particular, one unique binding site has marked the sequence and structural similarities of both peptides, while most of the contribution to the interaction was attributed to the electrostatic energy of Asn and Arg (< - 228 kJ/mol). The peptides were comprehensively characterized by computational and spectroscopic methods showing ~ 21% ß-sheets/aggregation for GASNGINAYL and ~ 27% α-helix for SLWERLAYGI. After decorating 12-nm ferritin-based nanovehicles with cysteinated peptides, both peptides exhibited high potential for use in actively targeted neuroblastoma nanotherapy with exceptional in vitro biocompatibility and stability, showing minor yet distinct influences of the peptides on the global expression profiles. Upon binding to hNET with fast binding kinetics, GASNGINAYLC peptides enabled rapid endocytosis of ferritins into neuroblastoma cells, leading to apoptosis due to increased selective cytotoxicity of transported payload ellipticine. Peptide-coated nanovehicles significantly showed higher levels of early apoptosis after 6 h than non-coated nanovehicles (11% and 7.3%, respectively). Furthermore, targeting with the GASNGINAYLC peptide led to significantly higher degree of late apoptosis compared to the SLWERLAYGIC peptide (9.3% and 4.4%, respectively). These findings were supported by increased formation of reactive oxygen species, down-regulation of survivin and Bcl-2 and up-regulated p53. CONCLUSION: This novel homing nanovehicle employing GASNGINAYLC peptide was shown to induce rapid endocytosis of ellipticine-loaded ferritins into neuroblastoma cells in selective fashion and with successful payload. Future homing peptide development via lead optimization and functional analysis can pave the way towards efficient peptide-based active delivery of nanomedicines to neuroblastoma cells.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Endocitose/genética , Nanoestruturas/química , Neuroblastoma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ferritinas/química , Humanos , Nanomedicina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo
18.
Environ Res ; 188: 109320, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32540568

RESUMO

Recently, the interest is increasing to find alternatives to replace the usage of antibiotics since their massive and improper usage enhance the antibiotic resistance in human pathogens. In this study, for the first time we showed that the soil proteins have very high antibacterial activity (98% of growth inhibition) against methicillin resistant Staphylococcus aureus (MRSA), one of the most threatening human pathogens. We found that the protein extract (C3) from the forest with past intensive management showed higher antibacterial activity than that of unmanaged forest. The MIC and IC50 were found to be 30 and 15.0 µg protein g-1 dry soil respectively. C3 was found to kill the bacteria by cell wall disruption and genotoxicity which was confirmed by optical and fluorescent microscopy and comet assay. According to qPCR study, the mecA (the antibiotic resistant gene) expression in MRSA was found to be down-regulated after C3 treatment. In contrast, C3 showed no hemolytic toxicity on human red blood cells which was confirmed by hemolytic assay. According to ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), 144 proteins were identified in C3 among which the majority belonged to Gram negative bacteria (45.8%). Altogether, our results will help to develop novel, cost-effective, non-toxic and highly efficient antibacterial medicines from natural sources against antibiotic resistant infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Humanos , Meticilina , Testes de Sensibilidade Microbiana , Solo
19.
Nanomaterials (Basel) ; 10(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316666

RESUMO

: In this study, the titanium-gadolinium quantum dots (TGQDs) were novel, first of its type to be synthesized, and fully characterized to date. Multiple physical characterization includes scanning electron microscopy (SEM), scanning electrochemical microscope (SCEM), x-ray fluorescence, spectrophotometry, and dynamic light scattering were carried out. The obtained results confirmed appropriate size and shape distributions in addition to processing optical features with high quantum yield. The synthesized TGQD was used as a fluorescent dye for bacterial detection and imaging by fluorescent microscopy and spectrophotometry, where TGQD stained only bacterial cells, but not human cells. The significant antibacterial activities of the TGQDs were found against a highly pathogenic bacterium (Staphylococcus aureus) and its antibiotic resistant strains (vancomycin and methicillin resistant Staphylococcus aureus) using growth curve analysis and determination of minimum inhibitory concentration (MIC) analysis. Live/dead cell imaging assay using phase-contrast microscope was performed for further confirmation of the antibacterial activity. Cell wall disruption and release of cell content was observed to be the prime mode of action with the reduction of cellular oxygen demand (OD).

20.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290291

RESUMO

The current epidemic of antibiotic-resistant infections urges to develop alternatives to less-effective antibiotics. To assess anti-bacterial potential, a novel coordinate compound (RU-S4) was synthesized using ruthenium-Schiff base-benzimidazole ligand, where ruthenium chloride was used as the central atom. RU-S4 was characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Antibacterial effect of RU-S4 was studied against Staphylococcus aureus (NCTC 8511), vancomycin-resistant Staphylococcus aureus (VRSA) (CCM 1767), methicillin-resistant Staphylococcus aureus (MRSA) (ST239: SCCmecIIIA), and hospital isolate Staphylococcus epidermidis. The antibacterial activity of RU-S4 was checked by growth curve analysis and the outcome was supported by optical microscopy imaging and fluorescence LIVE/DEAD cell imaging. In vivo (balb/c mice) infection model prepared with VRSA (CCM 1767) and treated with RU-S4. In our experimental conditions, all infected mice were cured. The interaction of coordination compound with bacterial cells were further confirmed by cryo-scanning electron microscope (Cryo-SEM). RU-S4 was completely non-toxic against mammalian cells and in mice and subsequently treated with synthesized RU-S4.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Rutênio/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...