Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 2(1): 136, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36352249

RESUMO

BACKGROUND: During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021. METHODS: We evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess calibration. The presented work is part of a pre-registered evaluation study. RESULTS: We find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove challenging to predict. CONCLUSIONS: Multi-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance.


We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future.

2.
J Theor Biol ; 418: 8-15, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28122195

RESUMO

Beginning in 2001, many instances of malicious software known as Internet worms have been using biological strategies such as hierarchical dispersal to seek out and spread to new susceptible hosts more efficiently. We measured the distribution of potentially susceptible hosts in the space of Internet addresses to determine their clustering. We have used the results to construct a full-size simulated Internet with 232 hosts with mean and variance of susceptible hosts chosen to match our measurements at multiple spatial scales. Epidemiological simulations of outbreaks among the roughly 2.8×106 susceptible hosts on this full-sized network show that local preference scanning greatly increases the chances for an infected host to locate and infect other susceptible hosts by a factor of as much as several hundred. However, once deploying this strategy, the overall success of a worm is relatively insensitive to the details of its dispersal strategy over a wide range of parameters. In addition, although using localized interactions may allow malicious software to spread more rapidly or to more hosts on average, it can also lead to increased variability in infection levels among replicate simulations. Using such dispersal strategies may therefore be a high risk, high reward strategy for the authors of such software.


Assuntos
Segurança Computacional , Internet , Modelos Teóricos , Software
3.
J Theor Biol ; 317: 47-54, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22999978

RESUMO

We explore a spatially implicit patch-occupancy model of a population on a landscape with continuous-valued heterogeneous habitat quality, primarily considering the case where the habitat quality of a site affects the mortality rate but not the fecundity of individuals at that site. Two analytical approaches to the model are constructed, by summing over the sites in the landscape and by integrating over the range of habitat quality. We obtain results relating the equilibrium population density and all moments of the probability distribution of the habitat quality of occupied sites, and relating the probability distributions of total habitat quality and occupied habitat quality. Special cases are considered for landscapes where habitat quality has either a uniform or a linear probability density function. For these cases, we demonstrate habitat association, where the quality of occupied sites is higher than the overall mean quality of all sites; the discrepancy between the two is reduced at larger population densities. The variance of the quality of occupied sites may be greater or less than the overall variance of habitat quality, depending on the distribution of habitat quality across the landscape. Increasing the variance of habitat quality is also shown to increase the ability of a population to persist on a landscape.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Reprodução
4.
Bull Math Biol ; 73(12): 3047-70, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21544676

RESUMO

An SIR epidemiological community-structured model is constructed to investigate the effects of clustered distributions of unvaccinated individuals and the distribution of the primary case relative to vaccination levels. The communities here represent groups such as neighborhoods within a city or cities within a region. The model contains two levels of mixing, where individuals make more intra-group than inter-group contacts. Stochastic simulations and analytical results are utilized to explore the model. An extension of the effective reproduction ratio that incorporates more spatial information by predicting the average number of tertiary infections caused by a single infected individual is introduced to characterize the system. Using these methods, we show that both the vaccination coverage and the variation in vaccination levels among communities affect the likelihood and severity of epidemics. The location of the primary infectious case and the degree of mixing between communities are also important factors in determining the dynamics of outbreaks. In some cases, increasing the efficacy of a vaccine can in fact increase the effective reproduction ratio in early generations, due to the effects of population structure on the likely initial location of an infection.


Assuntos
Epidemias/estatística & dados numéricos , Análise por Conglomerados , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Epidemias/prevenção & controle , Humanos , Conceitos Matemáticos , Modelos Biológicos , Vacinação/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...