Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(6): 2518-2528, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38379916

RESUMO

Poly(p-phenylenevinylene) (PPV) is a staple of the family of conjugated polymers with desirable optoelectronic properties for applications including light-emitting diodes (LEDs) and photovoltaic devices. Although the significant impact of olefin geometry on the steady-state optical properties of PPVs has been extensively studied, PPVs with precise stereochemistry have yet to be investigated using nonlinear optical spectroscopy for quantum sensing, as well as light harvesting for biological applications. Herein, we report our investigation of the influence of olefin stereochemistry on both linear and nonlinear optical properties through the synthesis of all-cis and all-trans PPV copolymers. We performed two-photon absorption (TPA) using a classical and entangled light source and compared both classical TPA and entangled two-photon absorption (ETPA) cross sections of these stereodefined PPVs. Whereas the TPA cross section of the all-trans PPV was expectedly higher than that of all-cis PPV, presumably because of the larger transition dipole moment, the opposite trend was measured via ETPA, with the all-cis PPV exhibiting the highest ETPA cross section. DFT calculations suggest that this difference might stem from the interaction of entangled photons with lower-lying electronic states in the all-cis PPV variant. Additionally, we explored the photoinduced processes for both cis and trans PPVs through time-resolved fluorescence upconversion and femtosecond transient absorption techniques. This study revealed that the sensitivity of PPVs in two-photon absorption varies with classical versus quantum light and can be modulated through the control of the geometry of the repeating alkenes, which is a key stepping stone toward their use in quantum sensing, bioimaging, and the design of polymer-based light-harvesting systems.

2.
Proc Natl Acad Sci U S A ; 120(51): e2311396120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079554

RESUMO

Cationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design. Therefore, accessing main-chain cationic polymers with high degrees of molecular tunability hinges upon the development of controlled polymerizations tolerating cationic motifs (or cation progenitors) near the propagating species. Herein, we report the synthesis and ring-opening metathesis polymerization (ROMP) of N-methylpyridinium-fused norbornene monomers. The identification of reaction conditions leading to a well-controlled ROMP enabled structural diversification of the main-chain cationic polymers and a study of their bioactivity. This family of polyelectrolytes was found to be active against both Gram-negative (Escherichia coli) and Gram-positive (Methicillin-resistant Staphylococcus aureus) bacteria with minimal inhibitory concentrations as low as 25 µg/mL. Additionally, the molar mass of the polymers was found to impact their hemolytic activity with cationic polymers of smaller degrees of polymerization showing increased selectivity for bacteria over human red blood cells.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Polímeros , Animais , Humanos , Polímeros/química , Polimerização , Antibacterianos/farmacologia , Antibacterianos/química , Norbornanos/química , Cátions , Mamíferos
3.
ACS Catal ; 13(11): 7263-7268, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37655265

RESUMO

While among the most common functional handles present in organic molecules, amines are a widely underutilized linchpin for C-C bond formation. To facilitate C-N bond cleavage, large activating groups are typically used but result in the generation of stoichiometric amounts of organic waste. Herein, we report an atom-economic activation of benzylic primary amines relying on the Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry and the aza-Ramberg-Bäcklund reaction. This two-step sequence allows the high-yielding generation of 1,2-dialkyldiazenes from primary amines via loss of SO2. Excitation of the diazenes with blue light and an Ir photocatalyst affords radical pairs upon expulsion of N2, which can be coaxed into the formation of C(sp3)-C(sp2) bonds upon diffusion and capture by a Ni catalyst. This arylative strategy relying on a traceless click approach was harnessed in a variety of examples and its mechanism was investigated.

4.
ACS Polym Au ; 3(3): 259-266, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37334193

RESUMO

Polysulfamides are the -SO2- analogues of polyureas and form an intriguing family of polymers containing hydrogen-bond donor and acceptor groups. However, unlike polyureas, their physical properties are mostly unknown because of the scarcity of synthetic methods to access such polymers. Herein, we report an expedient synthesis of AB monomers for the synthesis of polysulfamides via Sulfur(VI) Fluoride Exchange (SuFEx) click polymerization. Upon optimization of the step-growth process, a variety of polysulfamides were isolated and characterized. The versatility of the SuFEx polymerization allowed structural modulation of the main chain through the incorporation of aliphatic or aromatic amines. While all synthesized polymers presented high thermal stability via thermogravimetric analysis, the glass-transition temperature and crystallinity were shown to be highly tied to the structure of the backbone between repeating sulfamide units through differential scanning calorimetry and powder X-ray diffraction. Careful analysis via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and X-ray crystallography also revealed the formation of macrocyclic oligomers during the polymerization of one AB monomer. Finally, two protocols were developed to efficiently degrade all synthesized polysulfamides through either chemical recycling for polymers derived from aromatic amines or oxidative upcycling for those based on aliphatic amines.

5.
J Am Chem Soc ; 145(23): 12459-12464, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37255463

RESUMO

The cis/trans stereochemistry of repeating alkenes in polymers provides a powerful handle to modulate the thermal and mechanical properties of these soft materials, but synthetic methods to precisely dictate this parameter remain scarce. We report herein a cis-selective acyclic diene metathesis (ADMET) polymerization of readily available α,ω-diene monomers with high functional group tolerance. Identification of a highly stereoselective cyclometalated Ru catalyst allowed the synthesis of a broad array of polymers with cis contents up to 99%. This platform was leveraged to study the impact of the cis geometry on the thermal and mechanical properties of polyalkenamers, including an ABA triblock copolymer synthesized via extension of a cis-rich telechelic polyoctenamer with d,l-lactide. These results suggest that cis-selective ADMET affords an efficient strategy to tune the properties of a variety of polymers.

6.
Nat Chem ; 15(1): 14-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280767

RESUMO

The cis/trans geometry of olefins is known to dramatically influence the thermal and mechanical properties of polyalkenamers. Yet, polymerization methods that efficiently control this parameter are scarce. Here we report the development of a stereoretentive acyclic diene metathesis polymerization that uses the reactivity of dithiolate Ru carbenes combined with cis monomers. These Ru catalysts exhibit exquisite retention of the cis geometry and tolerate many polar functional groups, enabling the synthesis of all-cis polyesters, polycarbonates, polyethers and polysulfites. The stereoretentive acyclic diene metathesis polymerization is also characterized by low catalyst loadings and tolerance towards trans impurities in the monomer batch, which should facilitate large-scale implementation. Modulation of the reaction temperature and time leads to an erosion of stereoretention, permitting a stereocontrolled synthesis of polyalkenamers with predictable cis:trans ratios. The impact of the stereochemistry of the repeating alkenes on the thermal properties is clearly demonstrated through differential scanning calorimetry and thermogravimetric analysis.


Assuntos
Alcenos , Polienos , Polimerização , Alcenos/química , Temperatura , Catálise
7.
Macromolecules ; 56(13): 5033-5049, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38362140

RESUMO

In this paper, we present a synergistic, experimental, and computational study of the self-assembly of N,N'-disubstituted polysulfamides driven by hydrogen bonds (H-bonds) between the H-bonding donor and acceptor groups present in repeating sulfamides as a function of the structural design of the polysulfamide backbone. We developed a coarse-grained (CG) polysulfamide model that captures the directionality of H-bonds between the sulfamide groups and used this model in molecular dynamics (MD) simulations to study the self-assembly of these polymers in implicit solvent. The CGMD approach was validated by reproducing experimentally observed trends in the extent of crystallinity for three polysulfamides synthesized with aliphatic and/or aromatic repeating units. After validation of our CGMD approach, we computationally predicted the effect of repeat unit bulkiness, length, and uniformity of segment lengths in the polymers on the extent of orientational and positional order among the self-assembled polysulfamide chains, providing key design principles for tuning the extent of crystallinity in polysulfamides in experiments. Those computational predictions were then experimentally tested through the synthesis and characterization of polysulfamide architectures.

8.
Polym Chem ; 13(39): 5530-5535, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37193226

RESUMO

Pyridine-containing polymers are promising materials for a variety of applications from the capture of contaminants to the self-assembly of block copolymers. However, the innate Lewis basicity of the pyridine motif often hampers living polymerization catalyzed by transition-metal complexes. Herein, we report the expedient synthesis of pyridinonorbornene monomers via a [4+2] cycloaddition between 2,3-pyridynes and cyclopentadiene. Well-controlled ring-opening metathesis polymerization was enabled by careful structural design of the monomer. Polypyridinonorbornenes exhibited high Tg and Td, a promising feature for high-temperature applications. Investigation of the polymerization kinetics and of the reactivity of the chain ends shed light on the influence of nitrogen coordination on the chain-growth mechanism.

9.
Org Lett ; 23(13): 5271-5276, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34151557

RESUMO

Herein, we report a synthesis of medicinally relevant ß-ketosulfonamides via a photomediated 1,3-rearrangement of alkenyl sulfamates. This protocol tolerates a wide array of sensitive functional groups including alkenes, alkynes, and nitrogen-based heterocycles. Additionally, this work provides a general approach toward alkenyl sulfamates via a two-step Sulfur(VI) Fluoride Exchange (SuFEx) sequence capitalizing on SO2F2 as a linchpin to efficiently couple readily available ketones and amines without a large excess of either partner.


Assuntos
Sulfonamidas/síntese química , Ácidos Sulfônicos/síntese química , Química Click/métodos , Fluoretos/química , Estrutura Molecular , Sulfonamidas/química , Ácidos Sulfônicos/química , Enxofre/química
10.
J Am Chem Soc ; 142(28): 11983-11987, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32588629

RESUMO

Poly(p-phenylenevinylene)s (PPVs), a staple of the conductive polymer family, consist of alternating alkene and phenyl groups in conjugation. The physical properties of this organic material are intimately linked to the cis/trans configuration of the alkene groups. While many synthetic methods afford PPVs with all-trans stereochemistry, very few deliver the all-cis congeners. We report herein a synthesis of all-cis PPVs with living characteristics via stereoretentive ring-opening metathesis polymerization (ROMP). Exquisite catalyst control allows for the preparation of homopolymers or diblock copolymers with perfect stereoselectivity, narrow dispersities, and predictable average molar masses. All-cis PPVs can then serve as light-responsive polymers through clean photoisomerization of the stilbenoid units.

11.
Chem Sci ; 11(30): 7807-7812, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34094153

RESUMO

As hydrogen-bond donors and acceptors, N,N'-disubstituted sulfamides have been used in a range of applications from medicinal chemistry to anion-binding catalysis. However, compared to ureas or thioureas, the utilization of this unique moiety remains marginal, in part because of a lack of general synthetic methods to access unsymmetrical sulfamides. Specifically, polysulfamides are a virtually unknown type of polymer despite their potential utility in non-covalent dynamic networks, an intense area of research in materials science. We report herein a practical and efficient process to prepare unsymmetrical sulfamides via Sulfur(vi)-Fluoride Exchange (SuFEx) click chemistry. This process was then applied to synthesize polysulfamides. Thermal analysis showed that this family of polymers possess high thermal stability and tunable glass transition temperatures. Finally, hydrolysis studies indicated that aromatic polysulfamides could be recycled back to their constituting monomers at the end of their life cycle.

12.
J Am Chem Soc ; 141(27): 10605-10609, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31240909

RESUMO

Cationic polymerizations provide a valuable strategy for preparing macromolecules with excellent control but are inherently sensitive to impurities and commonly require rigorous reagent purification, low temperatures, and strictly anhydrous reaction conditions. By using pentacarbomethoxycyclopentadiene (PCCP) as the single-component initiating organic acid, we found that a diverse library of vinyl ethers can be controllably polymerized under ambient conditions. Additionally, excellent chain-end fidelity is maintained even without rigorous monomer purification. We hypothesize that a tight ion complex between the PCCP anion and the oxocarbenium ion chain end prevents chain-transfer events and enables a polymerization with living characteristics. Furthermore, terminating the polymerization with functional nucleophiles allows for chain-end functionalization in high yields.

13.
J Am Chem Soc ; 139(43): 15530-15538, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985061

RESUMO

The mechanism of the recently reported photocontrolled cationic polymerization of vinyl ethers was investigated using a variety of catalysts and chain-transfer agents (CTAs) as well as diverse spectroscopic and electrochemical analytical techniques. Our study revealed a complex activation step characterized by one-electron oxidation of the CTA. This oxidation is followed by mesolytic cleavage of the resulting radical cation species, which leads to the generation of a reactive cation-this species initiates the polymerization of the vinyl ether monomer-and a dithiocarbamate radical that is likely in equilibrium with the corresponding thiuram disulfide dimer. Reversible addition-fragmentation type degenerative chain transfer contributes to the narrow dispersities and control over chain growth observed under these conditions. Finally, the deactivation step is contingent upon the oxidation of the reduced photocatalyst by the dithiocarbamate radical concomitant with the production of a dithiocarbamate anion that caps the polymer chain end. The fine-tuning of the electronic properties and redox potentials of the photocatalyst in both the excited and the ground states is necessary to obtain a photocontrolled system rather than simply a photoinitiated system. The elucidation of the elementary steps of this process will aid the design of new catalytic systems and their real-world applications.


Assuntos
Cátions/química , Polimerização/efeitos da radiação , Compostos de Vinila/química , Catálise/efeitos da radiação , Oxirredução/efeitos dos fármacos
14.
J Am Chem Soc ; 139(31): 10665-10668, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745047

RESUMO

The ability to combine two polymerization mechanisms in a one-pot setup and switch the monomer selectivity via an external stimulus provides an excellent opportunity to control polymer sequence and structure. We report a strategy that enables monomer incorporation to be determined via the selection of the wavelength of light through selective activation of either cationic or radical processes. This method enables the synthesis of varying polymeric structures under identical solution conditions but with simple modulation of the external stimulus. Additionally, changes in the ratios of the two photocatalysts afford complementary chemical control over these reactions to design elaborated polymeric structures. Our strategy takes advantage of the unique regulation that can be accessed through light.

15.
Angew Chem Int Ed Engl ; 56(33): 9670-9679, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28277625

RESUMO

During the last 40 years, researchers investigating photoinitiated cationic polymerizations have delivered tremendous success in both industrial and academic settings. A myriad of photoinitiating systems have been developed, thus allowing polymerization of a broad array of monomers (e.g., epoxides, vinyl ethers, alkenes, cyclic ethers, and lactones) under practical, inexpensive, and environmentally benign conditions. More recently, owing to progress in photoredox catalysis, photocontrolled cationic polymerization has emerged as a means to precisely regulate polymer chain growth. This Minireview provides a concise historical perspective on cationic polymerization induced by light and discusses the latest advances in both photoinitiated and photocontrolled processes. The latter are exciting new directions for the field that will likely impact industries ranging from micropatterning to the synthesis of complex biomaterials and sequence-controlled polymers.

16.
J Am Chem Soc ; 138(48): 15535-15538, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934022

RESUMO

Photoinitiated cationic polymerizations are widely used in industrial processes; however, gaining photocontrol over chain growth would expand the utility of these methods and facilitate the design of novel complex architectures. We report herein a cationic polymerization regulated by visible light. This polymerization proceeds under mild conditions: a combination of a metal-free photocatalyst, a chain-transfer agent, and light irradiation enables the synthesis of various poly(vinyl ether)s with good control over molecular weight and dispersity as well as excellent chain-end fidelity. Significantly, photoreversible cation formation in this system enables efficient control over polymer chain growth with light.

18.
J Org Chem ; 80(14): 7019-32, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26151079

RESUMO

Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.


Assuntos
Microssomos Hepáticos/metabolismo , Piperidinas/síntese química , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/metabolismo , Pró-Fármacos/síntese química , Ticlopidina/análogos & derivados , Fenômenos Biológicos , Clopidogrel , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Piperidinas/química , Inibidores da Agregação Plaquetária/química , Pró-Fármacos/química , Estereoisomerismo , Ticlopidina/síntese química , Ticlopidina/química , Ticlopidina/metabolismo
19.
J Am Chem Soc ; 137(25): 8078-85, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26067765

RESUMO

The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species, proposed as the flavin-N5-oxide (Fl(N5[O])), as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Fl(red)) during substrate turnover. Subsequent reaction of Fl(red) with molecular oxygen restores the postulated Fl(N5[O]) via an unknown pathway. Here, we provide direct evidence for the Fl(N5[O]) species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Fl(red) to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the Fl(N5[O]) cofactor. Further biochemical and spectroscopic investigations reveal important features of the Fl(N5[O]) species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5.


Assuntos
Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Óxidos/metabolismo , Streptomyces/enzimologia , Flavinas/química , Nitrosaminas/metabolismo , Oxirredução , Óxidos/química , Transdução de Sinais , Streptomyces/química , Streptomyces/metabolismo , Especificidade por Substrato
20.
J Am Chem Soc ; 137(25): 8046-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26088401

RESUMO

A solution to the classic unsolved problem of olefin hydromethylation is presented. This highly chemoselective method can tolerate labile and reactive chemical functionalities and uses a simple set of reagents. An array of olefins, including mono-, di-, and trisubstituted olefins, are all smoothly hydromethylated. This mild protocol can be used to simplify the synthesis of a specific target or to directly "edit" complex natural products and other advanced materials. The method is also amenable to the simple installation of radioactive and stable labeled methyl groups.


Assuntos
Alcenos/química , Metano/química , Catálise , Metilação , Modelos Moleculares , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...