Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291734

RESUMO

Laser-Powder Bed Fusion (L-PBF) of metallic parts is a highly multivariate process. An understanding of powder feedstock properties is critical to ensure part quality. In this paper, a detailed examination of two commercial stainless steel 316L powders produced using the gas atomization process is presented. In particular, the effects of the powder properties (particle size and shape) on the powder rheology were examined. The results presented suggest that the powder properties strongly influence the powder rheology and are important factors in the selection of suitable powder for use in an additive manufacturing (AM) process. Both of the powders exhibited a strong correlation between the particle size and shape parameters and the powder rheology. Optical microscope images of melt pools of parts printed using the powders in an L-PBF machine are presented, which demonstrated further the significance of the powder morphology parameters on resulting part microstructures.

2.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443918

RESUMO

Wood-based TEMPO-oxidised cellulose nanofibrils (toCNF) are promising materials for biomedical applications. Cyclodextrins have ability to form inclusion complexes with hydrophobic molecules and are considered as a method to bring new functionalities to these materials. Water sorption and mechanical properties are also key properties for biomedical applications such as drug delivery and tissue engineering. In this work, we report the modification with ß-cyclodextrin (ßCD) of toCNF samples with different carboxyl contents viz. 756 ± 4 µmol/g and 1048 ± 32 µmol/g. The modification was carried out at neutral and acidic pH (2.5) to study the effect of dissociation of the carboxylic acid group. Films processed by casting/evaporation at 40 °C and cryogels processed by freeze-drying were prepared from ßCD modified toCNF suspensions and compared with reference samples of unmodified toCNF. The impact of modification on water sorption and mechanical properties was assessed. It was shown that the water sorption behaviour for films is driven by adsorption, with a clear impact of the chemical makeup of the fibres (charge content, pH, and adsorption of cyclodextrin). Modified toCNF cryogels (acidic pH and addition of cyclodextrins) displayed lower mechanical properties linked to the modification of the cell wall porosity structure. Esterification between ßCD and toCNF under acidic conditions was performed by freeze-drying, and such cryogels exhibited a lower decrease in mechanical properties in the swollen state. These results are promising for the development of scaffold and films with controlled mechanical properties and added value due to the ability of cyclodextrin to form an inclusion complex with active principle ingredient (API) or growth factor (GF) for biomedical applications.


Assuntos
Celulose Oxidada/química , Criogéis/química , Nanoestruturas/química , beta-Ciclodextrinas/química , Adsorção/efeitos dos fármacos , Óxidos N-Cíclicos/química , Liofilização , Nanofibras/química , Porosidade , Água/química
3.
ACS Appl Bio Mater ; 3(5): 2965-2975, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025343

RESUMO

This study presents the impregnation in supercritical carbon dioxide (scCO2) of nanocellulose-based structures with thymol as a natural antimicrobial molecule to prepare bioactive, biosourced materials. First, cellulose nanofibrils (CNFs) were used to produce four types of materials (nanopapers, cryogels from water or tert-butyl alcohol suspensions, and aerogels) of increasing specific surface area up to 160 m2·g-1, thanks to the use of different processes, namely, vacuum filtration, freeze-drying, and supercritical drying. Second, these CNF-based structures were impregnated with thymol in the scCO2 medium using a relatively low temperature and pressure of 40 °C and 100 bar during 1 h. The amount of impregnated thymol in the different CNF materials was investigated by fluorescence spectroscopy, 13C NMR analysis, and gas chromatography. All three methods consistently showed that the amount of impregnated thymol increases with the specific surface area of the material. The antimicrobial activity of the impregnated CNF-based materials was then measured against three reference strains of microorganisms: the Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis bacteria, and the yeast Candida albicans using the disk diffusion test method. The latter revealed the leaching of thymol in sufficient amounts to generate antimicrobial activity against the three strains in the case of the cryogel derived from a tert-butyl alcohol suspension and the aerogel, which are the two materials exhibiting the highest specific surface areas. The proposed strategy, therefore, enabled us to precisely steer the amount of active molecule loading and the related antimicrobial activity by adjusting the specific surface area of the biosourced material impregnated in green supercritical conditions. These results are very promising and confirm that supercritical impregnation of active molecules onto nanocellulose three-dimensional (3D) structures can be an interesting solution for the design of active medical devices such as wound dressings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...