Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Gen Genet ; 263(3): 411-22, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10821175

RESUMO

The REG1 gene encodes a regulatory subunit of the type-1 protein phosphatase (PP1) G1c7 in Saccharomyces cerevisiae, which directs the catalytic subunit to substrates involved in glucose repression. Loss of REG1 relieves glucose repression of many genes, including the MAL structural genes that encode the maltose fermentation enzymes. In this report, we explore the role of Reglp and its homolog Reg2p in glucose-induced inactivation of maltose permease. Glucose stimulates the proteolysis of maltose permease and very rapid loss of maltose transport activity - more rapid than can be explained by loss of the permease protein alone. In a reg1delta strain we observe a significantly reduced rate of glucose-induced proteolysis of maltose permease, and the rapid loss of maltose transport activity does not occur. Instead, surprisingly, the slow rate of proteolysis of maltose permease is accompanied by an increase in maltose transport activity. Loss of Reg2p modestly reduces the rates of both glucose-induced proteolysis of maltose permease and inactivation of maltose transport activity. Overexpression of Reg2p in a reg1delta strain suppresses the effect on maltose permease proteolysis and partially restores the inactivation of maltose transport activity, but does not affect the insensitivity of MAL gene expression to repression by glucose observed in this strain. Thus, protein phosphatase type-1 (Glc7p-Reglp and Glc7p-Reg2p) plays a role in transduction of the glucose signal during glucose-induced proteolysis of maltose permease, but only Glc7p-Reglp is involved in glucose-induced inactivation of maltose transport activity and glucose repression of MAL gene expression. Overexpression of REG1 partially restores proteolysis of maltose permease in a grr1delta strain, which lacks glucose signaling, but does not rescue rapid inactivation of maltose transport activity or sensitivity to glucose repression. A model for the role of Reglp and Reg2p in glucose signaling pathways is discussed. We also uncovered a previously unrecognized G2/M delay in the grr1delta but not the reg1delta strains, and this delay is suppressed by REG1 overexpression. The G1/S delay seen in grr1delta mutants is slightly suppressed as well, but REG1 overexpression does not suppress other grr1delta phenotypes such as insensitivity to glucose repression.


Assuntos
Proteínas de Transporte , Glucose/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Ubiquitina-Proteína Ligases , Western Blotting , Ciclo Celular , Ativação Enzimática , Proteínas F-Box , Citometria de Fluxo , Proteínas Fúngicas/fisiologia , Genótipo , Cinética , Maltose/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos , Fenótipo , Fosfoproteínas Fosfatases/genética , Fosforilação , Fatores de Tempo , alfa-Glucosidases/metabolismo
2.
Biochemistry ; 39(15): 4518-26, 2000 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-10758001

RESUMO

Maltose permease is required for maltose transport into Saccharomyces cells. Glucose addition to maltose-fermenting cells causes selective delivery of this integral plasma membrane protein to the yeast vacuole via endocytosis for degradation by resident proteases. This glucose-induced degradation is independent of the proteasome but requires ubiquitin and certain ubiquitin conjugating enzymes. We used mutation analysis to identify target sequences in Mal61/HA maltose permease involved in its selective glucose-induced degradation. A nonsense mutation was introduced at codon 581, creating a truncated functional maltose permease. Additional missense mutations were introduced into the mal61/HA-581NS allele, altering potential phosphorylation and ubiquitination sites. No significant effect was seen on the rate of glucose-induced degradation of these mutant proteins. Deletion mutations were constructed, removing residues 2-30, 31-60, 61-90, and 49-78 of the N-terminal cytoplasmic domain, as well as a missense mutation of a dileucine motif. Results indicate that the proline-, glutamate-, aspartate-, serine-, and threonine-rich (PEST) sequence found in the N-terminal cytoplasmic domain, particularly residues 49-78, is required for glucose-induced degradation of Mal61/HAp and for the rapid glucose-induced inactivation of maltose transport activity. The decreased rate of glucose-induced degradation correlates with a decrease in the level of glucose-induced ubiquitination of the DeltaPEST mutant permease. In addition, newly synthesized mutant permease proteins lacking residues 49-78 or carrying an alteration in the dileucine motif, residues 69 and 70, are resistant to glucose-induced inactivation of maltose transport activity. This N-terminal PEST-like sequence is the target of both the Rgt2p-dependent and the Glc7p-Reg1p-dependent glucose signaling pathways.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glucose/farmacologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Simportadores , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Meia-Vida , Leucina/genética , Leucina/metabolismo , Maltose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência/genética , Transdução de Sinais/efeitos dos fármacos , Ubiquitinas/metabolismo
3.
J Bacteriol ; 182(3): 647-54, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10633097

RESUMO

Organisms such as Saccharomyces capable of utilizing several different sugars selectively ferment glucose when less desirable carbon sources are also available. This is achieved by several mechanisms. Glucose down-regulates the transcription of genes involved in utilization of these alternate carbon sources. Additionally, it causes posttranslational modifications of enzymes and transporters, leading to their inactivation and/or degradation. Two glucose sensing and signaling pathways stimulate glucose-induced inactivation of maltose permease. Pathway 1 uses Rgt2p as a sensor of extracellular glucose and causes degradation of maltose permease protein. Pathway 2 is dependent on glucose transport and stimulates degradation of permease protein and very rapid inactivation of maltose transport activity, more rapid than can be explained by loss of protein alone. In this report, we characterize signal generation through pathway 2 using the rapid inactivation of maltose transport activity as an assay of signaling activity. We find that pathway 2 is dependent on HXK2 and to a lesser extent HXK1. The correlation between pathway 2 signaling and glucose repression suggests that these pathways share common upstream components. We demonstrate that glucose transport via galactose permease is able to stimulate pathway 2. Moreover, rapid transport and fermentation of a number of fermentable sugars (including galactose and maltose, not just glucose) are sufficient to generate a pathway 2 signal. These results indicate that pathway 2 responds to a high rate of sugar fermentation and monitors an intracellular metabolic signal. Production of this signal is not specific to glucose, glucose catabolism, glucose transport by the Hxt transporters, or glucose phosphorylation by hexokinase 1 or 2. Similarities between this yeast glucose sensing pathway and glucose sensing mechanisms in mammalian cells are discussed.


Assuntos
Glucose/metabolismo , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactose/farmacologia , Hexoquinase/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
4.
Genetics ; 154(1): 121-32, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10628974

RESUMO

Expression of the MAL genes required for maltose fermentation in Saccharomyces cerevisiae is induced by maltose and repressed by glucose. Maltose-inducible regulation requires maltose permease and the MAL-activator protein, a DNA-binding transcription factor encoded by MAL63 and its homologues at the other MAL loci. Previously, we showed that the Mig1 repressor mediates glucose repression of MAL gene expression. Glucose also blocks MAL-activator-mediated maltose induction through a Mig1p-independent mechanism that we refer to as glucose inhibition. Here we report the characterization of this process. Our results indicate that glucose inhibition is also Mig2p independent. Moreover, we show that neither overexpression of the MAL-activator nor elimination of inducer exclusion is sufficient to relieve glucose inhibition, suggesting that glucose acts to inhibit induction by affecting maltose sensing and/or signaling. The glucose inhibition pathway requires HXK2, REG1, and GSF1 and appears to overlap upstream with the glucose repression pathway. The likely target of glucose inhibition is Snf1 protein kinase. Evidence is presented indicating that, in addition to its role in the inactivation of Mig1p, Snf1p is required post-transcriptionally for the synthesis of maltose permease whose function is essential for maltose induction.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Maltose/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Sequência de Bases , Primers do DNA , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Transporte de Monossacarídeos , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
5.
Curr Genet ; 38(5): 233-40, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11191206

RESUMO

The Saccharomyces MAL-activator regulates the maltose-inducible expression of the MAL structural genes encoding maltose permease and maltase. Constitutive MAL-activator mutant alleles of two types were identified. The first were truncation mutations deleting C-terminal residues 283-470 and the second contained a large number of alterations compared to inducible alleles scattered throughout the C-terminal 200 residues. We used site-directed in vitro mutagenesis of the inducible MAL63 and MAL63/23 genes to identify the residues responsible for the negative regulatory function of the C-terminal domain. Intragenic suppressors that restored the inducible phenotype to the constitutive mutants were identified at closely linked and more distant sites within the MAL-activator protein. MAL63/mal64 fusions of the truncated mutants suggest that residues in the N-terminal 100 residues containing the DNA-binding domain also modulate basal expression. Moreover, a transcription activator protein consisting of LexA(1-87)-Gal4(768-881)-Mal63(200-470) allowed constitutive reporter gene expression, suggesting that the C-terminal regulatory domain is not sufficient for maltose-inducible control of this heterologous activation domain. These results suggest that complex and very specific intramolecular protein-protein interactions regulate the MAL-activator.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , alfa-Glucosidases/genética , Sequência de Aminoácidos , Regulação Enzimológica da Expressão Gênica , Genes Fúngicos , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
6.
Curr Genet ; 36(1-2): 1-12, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10447589

RESUMO

MAL63 of the MAL6 locus and its homologues at the other MAL loci encode transcription activators required for the maltose-inducible expression of the MAL structural genes. We carried out a deletion analysis of LexA-MAL63 gene fusions to localize the functional domains of the Mal63 MAL-activator protein. Our results indicate that the sequence-specific DNA-binding domain of Mal63p is contained in residues 1-100; that residues 60-283 constitute a functional core region including the transactivation domain; that residues 251-299 are required to inhibit the activation function of Mal63p; and that the rest of the C-terminal region of the protein contains a maltose-responsive domain that acts to relieve the inhibitory effect on the activation function. Abundant overproduction of Mal63p does not overcome the negative regulation of MAL gene expression in the absence of maltose, suggesting that a titratable MAL-specific repressor similar to Gal80p is not involved in the negative regulation of the MAL-activator. A model for maltose-inducible autoregulation of the MAL-activator is presented.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Maltose/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Sequência de Aminoácidos , Cisteína/genética , Cisteína/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fermentação , Proteínas Fúngicas/genética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Dedos de Zinco , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
7.
J Biol Chem ; 273(51): 34454-62, 1998 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-9852113

RESUMO

In Saccharomyces, the addition of glucose induces a rapid degradation of maltose permease that is dependent on endocytosis and vacuolar proteolysis (Medintz, I., Jiang, H., Han, E. K., Cui, W., and Michels, C. A. (1996) J. Bacteriol. 178, 2245-2254). Here we report on the role of ubiquitin conjugation in this process. Deletion of DOA4, which causes decreased levels of available ubiquitin, severely decreases the rate of glucose-induced proteolysis, and this is suppressed by the overproduction of ubiquitin. Overexpression of ubiquitin in an endocytosis-deficient end3-ts strain results in the glucose-stimulated accumulation of a larger molecular weight species of maltose permease, which we demonstrate is a ubiquitin-modified form of the protein by utilizing two ubiquitin alleles with different molecular weights. The size of this ubiquitinated species of maltose permease is consistent with monoubiquitination. A promoter mutation that reduces expression of RSP5/NPI1, a postulated ubiquitin-protein ligase, dramatically reduces the rate of glucose-induced proteolysis of maltose permease. The role of various ubiquitin-conjugating enzymes was investigated using strains carrying mutant alleles ubc1Delta ubc4Delta, ubc4Delta ubc5Delta, cdc34-ts2/ubc3, and ubc9-ts. Loss of these functions was not shown to effect glucose-induced proteolysis of maltose permease, but loss of Ubc1, -4, and -5 was found to inhibit maltose permease expression at the post-transcriptional level.


Assuntos
Glucose/farmacologia , Ligases/genética , Ligases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/fisiologia , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Monossacarídeos , Mutagênese , Plasmídeos , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases , Vacúolos/metabolismo
8.
J Biochem ; 124(4): 756-63, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9756620

RESUMO

Using a combined pharmacological and genetic approach, we have identified aa 260-280 in the C2 region as a critical factor in the catalytic function of protein kinase Calpha (PKCalpha). Progressive truncations from the N-terminus as well as selected internal deletion mutants were expressed in Saccharomyces cerevisiae and tested for altered sensitivity to dequalinium, a PKC inhibitor whose target site was previously mapped to the catalytic domain. PKC mutants representing truncations of up to 158 amino acid residues (aa) from the N-terminus (ND84 and ND158) displayed 60-63% inhibition of kinase activity by 50 microM dequalinium, somewhat more sensitive than the wild-type PKCalpha enzyme (45% inhibition). Mutant ND262, lacking N-terminal aa 1-262, was inhibited by almost 72% with 50 microM dequalinium, but mutant ND278, which lacked an additional 16 aa, was inhibited by only 9% of total activity. This result suggests that a C-terminal segment of the C2 region (aa 263-278) influences inhibition by dequalinium at low micromolar concentrations. An internal deletion mutant (D260-280) which retains the entire primary structure of PKCalpha except for aa 260-280, was similarly inhibited by only 4% with 50 microM dequalinium. In the absence of dequalinium and despite the presence of a nearly complete regulatory domain, this mutant exhibited constitutive activity (both in vitro and in a phenotypic assay with S. cerevisiae) that could not be further stimulated even by the potent activator TPA. Taken together, our findings suggest that, in the native structure of PKCalpha, the segment described by aa 260-280 regulates PKCalpha activity and influences the sensitivity of PKCalpha to dequalinium.


Assuntos
Isoenzimas/química , Isoenzimas/metabolismo , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Animais , Domínio Catalítico , Bovinos , Dequalínio/farmacologia , Isoenzimas/genética , Cinética , Mutagênese , Mutagênese Sítio-Dirigida , Proteína Quinase C/genética , Proteína Quinase C-alfa , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Deleção de Sequência
9.
Genetics ; 146(4): 1287-98, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9258674

RESUMO

We report the sequence of several MAL-activator genes, including inducible, constitutive, and noninducible alleles of MAL23, MAL43, MAL63, and mal64. Constitutive alleles of MAL23 and MAL43 vary considerably from inducible alleles in their C-terminal domain, with many of the alterations clustered and common to both alleles. The 27 alterations from residues 238-461 of Mal43-C protein are sufficient for constitutivity, but the minimal number of alterations needed for the constitutive phenotype could not be determined. The sequence of mal64, a nonfunctional homologue of MAL63, revealed that Mal64p is 85% identical to Mal63p. Two mutations that activate mal64 and cause constitutivity are nonsense mutations resulting in truncated proteins of 306 and 282 residues. We conclude that the C-terminal region of the MAL-activator, from residues 283-470, contains a maltose-responsive negative regulatory domain, and that extensive mutation or deletion of the entire region causes loss of the negative regulatory function. Additionally, certain sequence elements in the region appear to be necessary for efficient induction of the full-length Mal63 activator protein. These studies highlight the role of ectopic recombination as an important mechanism of mutagenesis of the telomere-associated family of MAL loci.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Mutação , Saccharomyces cerevisiae/genética , Alelos , Sequência de Bases , Primers do DNA/genética , DNA Fúngico/genética , Ativação Enzimática/genética , Fermentação , Regulação Fúngica da Expressão Gênica , Maltose/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Recombinação Genética , Mapeamento por Restrição , Saccharomyces cerevisiae/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
10.
Mol Biol Cell ; 8(7): 1293-304, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9243508

RESUMO

Glucose is a global metabolic regulator in Saccharomyces. It controls the expression of many genes involved in carbohydrate utilization at the level of transcription, and it induces the inactivation of several enzymes by a posttranslational mechanism. SNF3, RGT2, GRR1 and RGT1 are known to be involved in glucose regulation of transcription. We tested the roles of these genes in glucose-induced inactivation of maltose permease. Our results suggest that at least two signaling pathways are used to monitor glucose levels. One pathway requires glucose sensor transcript and the second pathway is independent of glucose transport. Rgt2p, which along with Snf3p monitors extracellular glucose levels, appears to be the glucose sensor for the glucose-transport-independent pathway. Transmission of the Rgt2p-dependent signal requires Grr1p. RGT2 and GRR1 also play a role in regulating the expression of the HXT genes, which appear to be the upstream components of the glucose-transport-dependent pathway regulating maltose permease inactivation. RGT2-1, which was identified as a dominant mutation causing constitutive expression of several HXT genes, causes constitutive proteolysis of maltose permease, that is, in the absence of glucose. A model of these glucose sensing/signaling pathways is presented.


Assuntos
Proteínas de Transporte , Glucose/fisiologia , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Transporte Biológico/efeitos dos fármacos , Proteínas de Ligação a DNA , Ativação Enzimática/efeitos dos fármacos , Proteínas F-Box , Proteínas Fúngicas/metabolismo , Maltose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/fisiologia , Mutação , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sistemas do Segundo Mensageiro , Transativadores/metabolismo , Fatores de Transcrição
11.
J Bacteriol ; 178(8): 2245-54, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8636025

RESUMO

The addition of glucose to maltose-fermenting Saccharomyces cerevisiae cells causes a rapid and irreversible loss of the ability to transport maltose, resulting both from the repression of transcription of the maltose permease gene and from the inactivation of maltose permease. The latter is referred to as glucose-induced inactivation or catabolite inactivation. We describe an analysis of this process in a maltose-fermenting strain expressing a hemagglutinin (HA)-tagged allele of MAL61, encoding maltose permease. The transfer of maltose-induced cells expressing the Mal61/HA protein to rich medium containing glucose produces a decrease in maltose transport rates which is paralleled by a decrease in Mal61/HA maltose permease protein levels. In nitrogen starvation medium, glucose produces a biphasic inactivation, i.e., an initial, rapid loss in transport activity (inhibition) followed by a slower decrease in transport activity, which correlates with a decrease in the amount of maltose permease protein (proteolysis). The inactivation in both rich and nitrogen-starved media results from a decrease in Vmax with no apparent change in Km. Using strains carrying mutations in END3, REN1(VPS2), PEP4, and PRE1 PRE2, we demonstrate that the proteolysis of Mal61/HAp is dependent on endocytosis and vacuolar proteolysis and is independent of the proteosome. Moreover, we show that the Mal61/HA maltose permease is present in differentially phosphorylated forms.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glucose/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transporte Biológico , Endopeptidases/metabolismo , Maltose/metabolismo , Proteínas de Transporte de Monossacarídeos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo
12.
Mol Microbiol ; 17(6): 1093-107, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8594329

RESUMO

Molecular genetic analysis is used to characterize the AGT1 gene encoding an alpha-glucoside transporter. AGT1 is found in many Saccharomyces cerevisiae laboratory strains and maps to a naturally occurring, partially functional allele of the MAL1 locus. Agt1p is a highly hydrophobic, postulated integral membrane protein. It is 57% identical to Mal61p, the maltose permease encoded at MAL6, and is also a member of the 12 transmembrane domain superfamily of sugar transporters. Like Mal61p, Agt1p is a high-affinity, maltose/proton symporter, but Mal61p is capable of transporting only maltose and turanose, while Agt1p transports these two alpha-glucosides as well as several others including isomaltose, alpha-methylglucoside, maltotriose, palatinose, trehalose and melezitose. AGT1 expression is maltose inducible and induction is mediated by the Mal-activator. The sequence of the upstream region of AGT1 is identical to that of the maltose-inducible MAL61 gene over a 469 bp region containing the UASMAL but the 315 bp sequence immediately upstream of AGT1 shows no significant homology to the sequence immediately upstream of MAL61. The evolutionary origin of the MAL1 allele to which AGT1 maps and the relationship of AGT1 to other alpha-glucoside fermentation genes is discussed.


Assuntos
Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Glucosídeos/metabolismo , Proteínas de Transporte de Monossacarídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Simportadores , Alelos , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/metabolismo , Mapeamento Cromossômico , Cromossomos Fúngicos , Evolução Molecular , Fermentação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Família Multigênica , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência , Especificidade por Substrato
13.
Curr Genet ; 28(3): 258-66, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8529272

RESUMO

Glucose repression is a global regulatory system in Saccharomyces cerevisiae controlling carbon-source utilization, mitochondrial biogenesis, gluconeogenesis and other metabolic pathways. Mig1p, a zinc-finger class of DNA-binding protein, is a transcriptional repressor regulating GAL and SUC gene expression in response to glucose. This report demonstrates that Mig1 protein represses transcription of the MAL61 and MAL62 structural genes and also the MAL63 gene, which encodes the Mal-activator. Mig1p DNA-binding sites were identified upstream of all three MAL genes. Both of the Mig1p-binding sites found in the bidirectional MAL61-MAL62 promoter were shown to function in the Mig1p-dependent glucose repression. Studies using constitutive Mal-activator alleles suggest that glucose regulation of inducer availability is a second major contributing factor in glucose repression of MAL gene expression and is even stronger than the Mig1p-dependent component of repression. Moreover, our results also suggest the contribution of other minor mechanisms in glucose regulation of MAL gene expression.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Maltose/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Transporte de Monossacarídeos , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Simportadores , Transativadores/biossíntese , alfa-Glucosidases/biossíntese , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/biossíntese , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transativadores/genética , alfa-Glucosidases/genética
15.
Genetics ; 136(3): 803-12, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8005435

RESUMO

In Saccharomyces cerevisiae, the gene functions required to ferment the disaccharide maltose are encoded by the MAL loci. Any one of five highly sequence homologous MAL loci identified in various S. cerevisiae strains (called MAL1, 2, 3, 4 and 6) is sufficient to ferment maltose. Each is a complex of three genes encoding maltose permease, maltase and a transcription activator. This family of loci maps to telomere-linked positions on different chromosomes and most natural strains contain more than one MAL locus. A number of naturally occurring, mutant alleles of MAL1 and MAL3 have been characterized which lack one or more of the gene functions encoded by the fully functional MAL loci. Loss of these gene functions appears to have resulted from mutation and/or rearrangement within the locus. Studies to date concentrated on the standard maltose fermenting strains of S. cerevisiae available from the Berkeley Yeast Stock Center collection. In this report we extend our genetic analysis of the MAL loci to a number of maltose fermenting and nonfermenting natural strains of S. cerevisiae and Saccharomyces paradoxus. No new MAL loci were discovered but several new mutant alleles of MAL1 were identified. The evolution of this gene family is discussed.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/genética , Saccharomyces/genética , Alelos , Evolução Biológica , Fermentação/genética , Genes Fúngicos , Teste de Complementação Genética , Variação Genética , Genética Populacional , Maltose/metabolismo , Família Multigênica , Saccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
16.
Curr Genet ; 22(3): 181-9, 1992 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-1525871

RESUMO

Maltose fermentation in Saccharomyces yeasts requires one of five unlinked MAL loci: MAL1, 2, 3, 4, or 6. Each locus consists of three genes encoding maltose permease, maltase and the MAL activator. At MAL6 the genes are called MAL61, MAL62 and MAL63, respectively. Transcription of MAL61 and MAL62 is coordinately induced by maltose and repressed by glucose and this regulation is mediated by the MAL activator. By deletion analysis of the MAL61-MAL62 intergenic region, we show that a 68-basepair region, from base pairs -515 to -582 upstream of the MAL61 start codon, contains a sequence necessary for the maltose-induced expression of MAL61 and MAL62, the UAS(MAL). This sequence contains two copies of an 11-basepair dyad which may be the active elements of the UAS(MAL). Using heterologous gene plasmid constructs, we demonstrate that the UAS(MAL) sequence is sufficient for maltose inducibility of MAL62 and that this regulated expression requires a functional MAL activator. Our results suggest that the MAL61-MAL62 intergenic region contains additional distinct elements which function to precisely regulate MAL61 and/or MAL62 expression. Among these are repressing sequences, including a glucose-responsive element located between base pairs -583 and -638, which is partially responsible for mediating glucose-repression of MAL62 expression.


Assuntos
Maltose/farmacologia , Proteínas de Membrana Transportadoras/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , alfa-Glucosidases/genética , Sequência de Bases , Clonagem Molecular , Fermentação , Regulação Fúngica da Expressão Gênica , Maltose/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos , Plasmídeos , Saccharomyces cerevisiae/enzimologia
17.
Yeast ; 8(8): 655-65, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1441745

RESUMO

Saccharomyces strains capable of fermenting maltose contain any one of five telomere-associated MAL loci. Each MAL locus is a complex of three genes encoding the three functions required to ferment maltose: maltose permease (GENE 1), maltase (GENE 2) and the MAL trans-activator (GENE 3). All five loci have been cloned and all are highly sequence homologous over at least a 9.0 kbp region containing these GENEs (Charron et al., Genetics 122, 307-331, 1989). Our initial studies of strains carrying the MAL3 locus indicated the presence of linked, repeated MAL-homologous sequences (Michels and Needleman, Mol. Gen. Genet. 191, 225-230, 1983). Here we report our analysis of the centromere-proximal MAL3-linked sequences and show that the complete MAL3 locus spans approximately 40 kbp and consists of tandemly arrayed, partial repeats of the three GENE sequences described above. In addition, the structure of the MAL3 locus is compared to that of three partially functional alleles of MAL3. These alleles were shown to contain only MAL31 and MAL32 and their structure suggests that they resulted from MAL3 deletions removing the sequences centromere-proximal to MAL31. The amplification and rearrangement of the telomere-linked MAL3 sequences are discussed in the context of studies on other telemere-associated sequences from yeast and other species.


Assuntos
Família Multigênica , Sequências Repetitivas de Ácido Nucleico , Saccharomyces/genética , Telômero/química , Alelos , Genes Fúngicos/fisiologia , Telômero/fisiologia
18.
J Bacteriol ; 173(5): 1817-20, 1991 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1999393

RESUMO

We have investigated the transport of maltose in a genetically defined maltose-fermenting strain of Saccharomyces cerevisiae carrying the MAL1 locus. Two kinetically different systems were identified: a high-affinity transporter with a Km of 4 mM and a low-affinity transporter with a Km of 70 to 80 mM. The high-affinity maltose transporter is maltose inducible and is encoded by the MAL11 (and/or MAL61) gene of the MAL1 (and/or MAL6) locus. The low-affinity maltose transporter is expressed constitutively and is not related to MAL11 and/or MAL61. Both maltose transporters are subject to glucose-induced inactivation.


Assuntos
Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Proteínas de Transporte de Monossacarídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Simportadores , Transporte Biológico/efeitos dos fármacos , Genes Fúngicos , Glucose/farmacologia , Cinética , Maltose/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
Genetics ; 123(3): 477-84, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2689282

RESUMO

The MAL61 gene of Saccharomyces cerevisiae encodes maltose permease, a protein required for the transport of maltose across the plasma membrane. Here we report the nucleotide sequence of the cloned MAL61 gene. A single 1842 bp open reading frame is present within this region encoding the 614 residue putative MAL61 protein. Hydropathy analysis suggests that the secondary structure consists of two blocks of six transmembrane domains separated by an approximately 71 residue intracellular region. The N-terminal and C-terminal domains of 100 and 67 residues in length, respectively, also appear to be intracellular. Significant sequence and structural homology is seen between the MAL61 protein and the Saccharomyces high-affinity glucose transporter encoded by the SNF3 gene, the Kluyveromyces lactis lactose permease encoded by the LAC12 gene, the human HepG2 glucose transporter and the Escherichia coli xylose and arabinose transporters encoded by the xylE and araE genes, indicating that all are members of a family of sugar transporters and are related either functionally or evolutionarily. A mechanism for glucose-induced inactivation of maltose transport activity is discussed.


Assuntos
Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Genes Bacterianos/genética , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...