Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 657796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968112

RESUMO

Wheat stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt) is a global threat to wheat production. Fast evolving populations of Pgt limit the efficacy of plant genetic resistance and constrain disease management strategies. Understanding molecular mechanisms that lead to rust infection and disease susceptibility could deliver novel strategies to deploy crop resistance through genetic loss of disease susceptibility. We used comparative transcriptome-based and orthology-guided approaches to characterize gene expression changes associated with Pgt infection in susceptible and resistant Triticum aestivum genotypes as well as the non-host Brachypodium distachyon. We targeted our analysis to genes with differential expression in T. aestivum and genes suppressed or not affected in B. distachyon and report several processes potentially linked to susceptibility to Pgt, such as cell death suppression and impairment of photosynthesis. We complemented our approach with a gene co-expression network analysis to identify wheat targets to deliver resistance to Pgt through removal or modification of putative susceptibility genes.

2.
Plant Direct ; 4(5): e00220, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426691

RESUMO

Genome-wide association studies (GWAS) have proven to be a valuable approach for identifying genetic intervals associated with phenotypic variation in Medicago truncatula. These intervals can vary in size, depending on the historical local recombination. Typically, significant intervals span numerous gene models, limiting the ability to resolve high-confidence candidate genes underlying the trait of interest. Additional genomic data, including gene co-expression networks, can be combined with the genetic mapping information to successfully identify candidate genes. Co-expression network analysis provides information about the functional relationships of each gene through its similarity of expression patterns to other well-defined clusters of genes. In this study, we integrated data from GWAS and co-expression networks to pinpoint candidate genes that may be associated with nodule-related phenotypes in M. truncatula. We further investigated a subset of these genes and confirmed that several had existing evidence linking them nodulation, including MEDTR2G101090 (PEN3-like), a previously validated gene associated with nodule number.

3.
BMC Genomics ; 21(1): 281, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32264824

RESUMO

BACKGROUND: Advances in sequencing technologies have led to the release of reference genomes and annotations for multiple individuals within more well-studied systems. While each of these new genome assemblies shares significant portions of synteny between each other, the annotated structure of gene models within these regions can differ. Of particular concern are split-gene misannotations, in which a single gene is incorrectly annotated as two distinct genes or two genes are incorrectly annotated as a single gene. These misannotations can have major impacts on functional prediction, estimates of expression, and many downstream analyses. RESULTS: We developed a high-throughput method based on pairwise comparisons of annotations that detect potential split-gene misannotations and quantifies support for whether the genes should be merged into a single gene model. We demonstrated the utility of our method using gene annotations of three reference genomes from maize (B73, PH207, and W22), a difficult system from an annotation perspective due to the size and complexity of the genome. On average, we found several hundred of these potential split-gene misannotations in each pairwise comparison, corresponding to 3-5% of gene models across annotations. To determine which state (i.e. one gene or multiple genes) is biologically supported, we utilized RNAseq data from 10 tissues throughout development along with a novel metric and simulation framework. The methods we have developed require minimal human interaction and can be applied to future assemblies to aid in annotation efforts. CONCLUSIONS: Split-gene misannotations occur at appreciable frequency in maize annotations. We have developed a method to easily identify and correct these misannotations. Importantly, this method is generic in that it can utilize any type of short-read expression data. Failure to account for split-gene misannotations has serious consequences for biological inference, particularly for expression-based analyses.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular/métodos , Zea mays/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Humanos , Fases de Leitura Aberta , Análise de Sequência de RNA , Distribuição Tecidual , Zea mays/classificação , Zea mays/genética
4.
BMC Biotechnol ; 20(1): 10, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093670

RESUMO

BACKGROUND: As with many plant species, current genome editing strategies in soybean are initiated by stably transforming a gene that encodes an engineered nuclease into the genome. Expression of the transgene results in a double-stranded break and repair at the targeted locus, oftentimes resulting in mutation(s) at the intended site. As soybean is a self-pollinating species with 20 chromosome pairs, the transgene(s) in the T0 plant are generally expected to be unlinked to the targeted mutation(s), and the transgene(s)/mutation(s) should independently assort into the T1 generation, resulting in Mendellian combinations of transgene presence/absence and allelic states within the segregating family. This prediction, however, is not always consistent with observed results. RESULTS: In this study, we investigated inheritance patterns among three different CRISPR/Cas9 transgenes and their respective induced mutations in segregating soybean families. Next-generation resequencing of four T0 plants and four T1 progeny plants, followed by broader assessments of the segregating families, revealed both expected and unexpected patterns of inheritance among the different lineages. These unexpected patterns included: (1) A family in which T0 transgenes and mutations were not transmitted to progeny; (2) A family with four unlinked transgene insertions, including two respectively located at paralogous CRISPR target break sites; (3) A family in which mutations were observed and transmitted, but without evidence of transgene integration nor transmission. CONCLUSIONS: Genome resequencing provides high-resolution of transgene integration structures and gene editing events. Segregation patterns of these events can be complicated by several potential mechanisms. This includes, but is not limited to, plant chimeras, multiple unlinked transgene integrations, editing of intended and paralogous targets, linkage between the transgene integration and target site, and transient expression of the editing reagents without transgene integration into the host genome.


Assuntos
Sistemas CRISPR-Cas , Glycine max/genética , Mutação , Edição de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Análise de Sequência de DNA , Glycine max/crescimento & desenvolvimento , Transgenes
5.
Methods Mol Biol ; 1917: 217-234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610639

RESUMO

CRISPR/Cas9 mediated genome editing technology has experienced rapid advances in recent years and has been applied to a wide variety of plant species, including soybean. Several platforms have been developed for designing and cloning of single CRISPR targets or multiple targets in a single destination vector. This chapter provides an updated working protocol for applying CRISPR/Cas9 technology to target a single gene or multiple genes simultaneously in soybean. We describe two platforms for cloning single CRISPR targets and multiplexing targets, respectively, and reagent delivery methodologies. The protocols address crucial limiting steps that can limit CRISPR editing in soybean hairy roots, composite plants, and tissue culture-based regenerated whole plants. To date, transgenic soybean plants with mutagenesis in up to three target genes have been obtained with this procedure.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Eletroforese em Gel de Poliacrilamida , Raízes de Plantas/genética , Transformação Genética/genética
6.
Plant Genome ; 12(3): 1-13, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016589

RESUMO

CORE IDEAS: 'Fiskeby III' harbors a combination of abiotic stress traits, including iron deficiency chlorosis (IDC) tolerance. An IDC quantitative trait locus on chromosome Gm05 was identified in genome-wide association studies and biparental populations. Fine-mapping resolved a 137-kb interval containing strong candidate genes. Iron deficiency chlorosis (IDC) is an important nutrient stress for soybean [Glycine max (L.) Merr.] grown in high-pH soils. Despite numerous agronomic attempts to alleviate IDC, genetic tolerance remains the most effective preventative measure against symptoms. In this study, two association mapping populations and a biparental mapping population were used for genetic mapping of IDC tolerance. Quantitative trait loci (QTLs) were identified on chromosomes Gm03, Gm05, and Gm06. Heterogenous inbred families were developed to fine-map the Gm05 QTL, which was uniquely supported in all three mapping populations. Fine-mapping resulted in a QTL with an interval size of 137 kb on the end of the short arm of Gm05, which produced up to a 1.5-point reduction in IDC severity on a 1 to 9 scale in near isogenic lines.


Assuntos
Glycine max/genética , Deficiências de Ferro , Doenças das Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas
7.
Plant Cell ; 30(12): 2922-2942, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30413654

RESUMO

Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Zea mays/genética , Desequilíbrio de Ligação/genética , Software
8.
G3 (Bethesda) ; 8(10): 3367-3375, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30131329

RESUMO

Soybean is the world's leading source of vegetable protein and demand for its seed continues to grow. Breeders have successfully increased soybean yield, but the genetic architecture of yield and key agronomic traits is poorly understood. We developed a 40-mating soybean nested association mapping (NAM) population of 5,600 inbred lines that were characterized by single nucleotide polymorphism (SNP) markers and six agronomic traits in field trials in 22 environments. Analysis of the yield, agronomic, and SNP data revealed 23 significant marker-trait associations for yield, 19 for maturity, 15 for plant height, 17 for plant lodging, and 29 for seed mass. A higher frequency of estimated positive yield alleles was evident from elite founder parents than from exotic founders, although unique desirable alleles from the exotic group were identified, demonstrating the value of expanding the genetic base of US soybean breeding.


Assuntos
Glycine max/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genética Populacional , Genoma de Planta , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
BMC Biotechnol ; 18(1): 38, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859067

RESUMO

BACKGROUND: The advent of -omics technologies has enabled the resolution of fine molecular differences among individuals within a species. DNA sequence variations, such as single nucleotide polymorphisms or small deletions, can be tabulated for many kinds of genotype comparisons. However, experimental designs and analytical approaches are replete with ways to overestimate the level of variation present within a given sample. Analytical pipelines that do not apply proper thresholds nor assess reproducibility among samples are susceptible to calling false-positive variants. Furthermore, issues with sample genotype identity or failing to account for heterogeneity in reference genotypes may lead to misinterpretations of standing variants as polymorphisms derived de novo. RESULTS: A recent publication that featured the analysis of RNA-sequencing data in three transgenic soybean event series appeared to overestimate the number of sequence variants identified in plants that were exposed to a tissue culture based transformation process. We reanalyzed these data with a stringent set of criteria and demonstrate three different factors that lead to variant overestimation, including issues related to the genetic identity of the background genotype, unaccounted genetic heterogeneity in the reference genome, and insufficient bioinformatics filtering. CONCLUSIONS: This study serves as a cautionary tale to users of genomic and transcriptomic data that wish to assess the molecular variation attributable to tissue culture and transformation processes. Moreover, accounting for the factors that lead to sequence variant overestimation is equally applicable to samples derived from other germplasm sources, including chemical or irradiation mutagenesis and genome engineering (e.g., CRISPR) processes.


Assuntos
Glycine max/genética , Plantas Geneticamente Modificadas/genética , Polimorfismo de Nucleotídeo Único , Biologia Computacional , Genoma de Planta , Técnicas de Genotipagem , Reprodutibilidade dos Testes , Análise de Sequência de RNA
10.
Plant Biotechnol J ; 16(6): 1125-1137, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29087011

RESUMO

Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/genética , Medicago truncatula/genética , Proteínas de Ligação a RNA/genética , RNA/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Medicago truncatula/metabolismo , Mutagênese Sítio-Dirigida , Glycine max/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
11.
G3 (Bethesda) ; 7(4): 1215-1223, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28235823

RESUMO

Mutagenesis is a useful tool in many crop species to induce heritable genetic variability for trait improvement and gene discovery. In this study, forward screening of a soybean fast neutron (FN) mutant population identified an individual that produced seed with nearly twice the amount of sucrose (8.1% on dry matter basis) and less than half the amount of oil (8.5% on dry matter basis) as compared to wild type. Bulked segregant analysis (BSA), comparative genomic hybridization, and genome resequencing were used to associate the seed composition phenotype with a reciprocal translocation between chromosomes 8 and 13. In a backcross population, the translocation perfectly cosegregated with the seed composition phenotype and exhibited non-Mendelian segregation patterns. We hypothesize that the translocation is responsible for the altered seed composition by disrupting a ß-ketoacyl-[acyl carrier protein] synthase 1 (KASI) ortholog. KASI is a core fatty acid synthesis enzyme that is involved in the conversion of sucrose into oil in developing seeds. This finding may lead to new research directions for developing soybean cultivars with modified carbohydrate and oil seed composition.


Assuntos
Cromossomos de Plantas/genética , Glycine max/genética , Proteínas de Plantas/genética , Sementes/genética , Homologia de Sequência do Ácido Nucleico , Óleo de Soja/metabolismo , Sacarose/metabolismo , Translocação Genética , Mapeamento Cromossômico , Genes de Plantas , Heterozigoto , Homozigoto , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes
12.
Biochim Biophys Acta Gene Regul Mech ; 1860(1): 53-63, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27485388

RESUMO

Co-expression networks have been shown to be a powerful tool for inferring a gene's function when little is known about it. With the advent of next generation sequencing technologies, the construction and analysis of co-expression networks is now possible in non-model species, including those with agricultural importance. Here, we review fundamental concepts in the construction and application of co-expression networks with a focus on agricultural crops. We survey past and current applications of co-expression network analysis in several agricultural species and provide perspective on important considerations that arise when analyzing network relationships. We conclude with a perspective on future directions and potential challenges of utilizing this powerful approach in crops. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Agricultura/métodos
13.
BMC Biotechnol ; 16(1): 41, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27176220

RESUMO

BACKGROUND: The safety of mutagenized and genetically transformed plants remains a subject of scrutiny. Data gathered and communicated on the phenotypic and molecular variation induced by gene transfer technologies will provide a scientific-based means to rationally address such concerns. In this study, genomic structural variation (e.g. large deletions and duplications) and single nucleotide polymorphism rates were assessed among a sample of soybean cultivars, fast neutron-derived mutants, and five genetically transformed plants developed through Agrobacterium based transformation methods. RESULTS: On average, the number of genes affected by structural variations in transgenic plants was one order of magnitude less than that of fast neutron mutants and two orders of magnitude less than the rates observed between cultivars. Structural variants in transgenic plants, while rare, occurred adjacent to the transgenes, and at unlinked loci on different chromosomes. DNA repair junctions at both transgenic and unlinked sites were consistent with sequence microhomology across breakpoints. The single nucleotide substitution rates were modest in both fast neutron and transformed plants, exhibiting fewer than 100 substitutions genome-wide, while inter-cultivar comparisons identified over one-million single nucleotide polymorphisms. CONCLUSIONS: Overall, these patterns provide a fresh perspective on the genomic variation associated with high-energy induced mutagenesis and genetically transformed plants. The genetic transformation process infrequently results in novel genetic variation and these rare events are analogous to genetic variants occurring spontaneously, already present in the existing germplasm, or induced through other types of mutagenesis. It remains unclear how broadly these results can be applied to other crops or transformation methods.


Assuntos
Reparo do DNA/genética , Variação Genética/genética , Genoma de Planta/genética , Glycine max/genética , Mutação/genética , Plantas Geneticamente Modificadas/genética , Dano ao DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética/métodos
14.
G3 (Bethesda) ; 6(2): 423-33, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26681515

RESUMO

Small nonprotein-coding microRNAs (miRNAs) are present in most eukaryotes and are central effectors of RNA silencing-mediated mechanisms for gene expression regulation. In plants, DICER-LIKE1 (DCL1) is the founding member of a highly conserved family of RNase III-like endonucleases that function as core machinery proteins to process hairpin-like precursor transcripts into mature miRNAs, small regulatory RNAs, 21-22 nucleotides in length. Zinc finger nucleases (ZFNs) were used to generate single and double-mutants of putative soybean DCL1 homologs, DCL1a and DCL1b, to confirm their functional role(s) in the soybean miRNA pathway. Neither DCL1 single mutant, dcl1a or dcl1b plants, exhibited a pronounced morphological or molecular phenotype. However, the dcl1a/dcl1b double mutant expressed a strong morphological phenotype, characterized by reduced seed size and aborted seedling development, in addition to defective miRNA precursor transcript processing efficiency and deregulated miRNA target gene expression. Together, these findings indicate that the two soybean DCL1 paralogs, DCL1a and DCL1b, largely play functionally redundant roles in the miRNA pathway and are essential for normal plant development.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , MicroRNAs/genética , Mutação , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , Ribonuclease III/genética , Alelos , Sequência de Bases , Análise por Conglomerados , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Mutagênese Sítio-Dirigida , Fenótipo , Ligação Proteica , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Dedos de Zinco
15.
GM Crops Food ; 6(4): 243-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26479970

RESUMO

The CRISPR/Cas9 system is rapidly becoming the reagent of choice for targeted mutagenesis and gene editing in crop species. There are currently intense research efforts in the crop sciences to identify efficient CRISPR/Cas9 platforms to carry out targeted mutagenesis and gene editing projects. These efforts typically result in the incremental tweaking of various platform components including the identification of crop-specific promoters and terminators for optimal expression of the Cas9 enzyme and identification of promoters for expression of the CRISPR guide RNA. In this report, we demonstrate the development of an online web tool for fast identification of CRISPR/Cas9 target loci within soybean gene models, and generic DNA sequences. The web-tool described in this work can quickly identify a high number of potential CRISPR/Cas9 target sites, including restriction enzyme sites that can facilitate the detection of new mutations. In conjunction with the web tool, a soybean codon-optimized CRISPR/Cas9 platform was designed to direct double-stranded breaks to the targeted loci in hairy root transformed cells. The modified Cas9 enzyme was shown to successfully mutate target genes in somatic cells of 2 legume species, soybean and Medicago truncatula. These new tools may help facilitate targeted mutagenesis in legume and other plant species.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Glycine max/genética , Medicago truncatula/genética , Mutagênese Sítio-Dirigida/métodos , Sítios de Ligação , Proteínas Associadas a CRISPR/genética , Genes de Plantas , Engenharia Genética/métodos , Internet , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Software
16.
Plant Cell Rep ; 34(10): 1707-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26082433

RESUMO

KEY MESSAGE: Research describes the practical application of the codA negative selection marker in Soybean. Conditions are given for codA selection at both the shooting and rooting stages of regeneration. Conditional negative selection is a powerful technique whereby the absence of a gene product allows survival in otherwise lethal conditions. In plants, the Escherichia coli gene codA has been employed as a negative selection marker. Our research demonstrates that codA can be used as a negative selection marker in soybean, Glycine max. Like most plants, soybean does not contain cytosine deaminase activity and we show here that wild-type seedlings are not affected by inclusion of 5-FC in growth media. In contrast, transgenic G. max plants expressing codA and grown in the presence of more than 200 µg/mL 5-FC exhibit reductions in hypocotyl and taproot lengths, and severe suppression of lateral root development. We also demonstrate a novel negative selection-rooting assay in which codA-expressing aerial tissues or shoot cuttings are inhibited for root formation in media containing 5-FC. Taken together these techniques allow screening during either the regeneration or rooting phase of tissue culture.


Assuntos
Citosina Desaminase/genética , Marcadores Genéticos , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Escherichia coli/genética , Plantas Geneticamente Modificadas/enzimologia , Seleção Genética , Glycine max/enzimologia
17.
G3 (Bethesda) ; 5(1): 123-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452420

RESUMO

The soybean [Glycine max (L.) Merr.] chlorophyll-deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a nonsynonymous nucleotide substitution in the third exon of a Mg-chelatase subunit gene (ChlI1a) on chromosome 13. This gene was selected as a candidate for a different yellow foliage mutant, T219H (Y11y11), that had been previously mapped to chromosome 13. Although the phenotypes of MinnGold and T219H are clearly distinct, sequencing of ChlI1a in T219H identified a different nonsynonymous mutation in the third exon, only six base pairs from the MinnGold mutation. This information, along with previously published allelic tests, were used to identify and clone a third yellow foliage mutation, CD-5, which was previously mapped to chromosome 15. This mutation was identified in the ChlI1b gene, a paralog of ChlI1a. Sequencing of the ChlI1b allele in CD-5 identified a nonsynonymous substitution in the third exon that confers an identical amino acid change as the T219H substitution at ChlI1a. Protein sequence alignments of the two Mg-chelatase subunits indicated that the sites of amino acid modification in MinnGold, T219H, and CD-5 are highly conserved among photosynthetic species. These results suggest that amino acid alterations in this critical domain may create competitive inhibitory interactions between the mutant and wild-type ChlI1a and ChlI1b proteins.


Assuntos
Clorofila/deficiência , Glycine max/genética , Liases/genética , Sequência de Aminoácidos , Mutação , Folhas de Planta , Subunidades Proteicas/genética
18.
Genetics ; 198(3): 967-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25213171

RESUMO

Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean [Glycine max (L.) Merrill] plants sampled from a large fast neutron-mutagenized population. While deletion rates were similar to previous reports, surprisingly high rates of segmental duplication were also found throughout the genome. Duplication coverage extended across entire chromosomes and often prevailed at chromosome ends. High-throughput resequencing analysis of selected mutants resolved specific chromosomal events, including the rearrangement junctions for a large deletion, a tandem duplication, and a translocation. Genetic mapping associated a large deletion on chromosome 10 with a quantitative change in seed composition for one mutant. A tandem duplication event, located on chromosome 17 in a second mutant, was found to cosegregate with a short petiole mutant phenotype, and thus may serve as an example of a morphological change attributable to a DNA copy number gain. Overall, this study provides insight into the resilience of the soybean genome, the patterns of structural variation resulting from fast neutron mutagenesis, and the utility of fast neutron-irradiated mutants as a source of novel genetic losses and gains.


Assuntos
Nêutrons Rápidos , Genoma de Planta , Glycine max/genética , Duplicações Segmentares Genômicas/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Hibridização Genômica Comparativa , Dosagem de Genes , Genes de Plantas , Variação Estrutural do Genoma , Fenótipo , Reprodutibilidade dos Testes , Sementes/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...