Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(21): e113891, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743763

RESUMO

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Assuntos
Cílios , Organelas , Cílios/metabolismo , Diferenciação Celular
2.
Dev Cell ; 58(8): 677-693.e9, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37019113

RESUMO

Many G protein-coupled receptors (GPCRs) reside within cilia of mammalian cells and must undergo regulated exit from cilia for the appropriate transduction of signals such as hedgehog morphogens. Lysine 63-linked ubiquitin (UbK63) chains mark GPCRs for regulated removal from cilia, but the molecular basis of UbK63 recognition inside cilia remains elusive. Here, we show that the BBSome-the trafficking complex in charge of retrieving GPCRs from cilia-engages the ancestral endosomal sorting factor target of Myb1-like 2 (TOM1L2) to recognize UbK63 chains within cilia of human and mouse cells. TOM1L2 directly binds to UbK63 chains and the BBSome, and targeted disruption of the TOM1L2/BBSome interaction results in the accumulation of TOM1L2, ubiquitin, and the GPCRs SSTR3, Smoothened, and GPR161 inside cilia. Furthermore, the single-cell alga Chlamydomonas also requires its TOM1L2 ortholog in order to clear ubiquitinated proteins from cilia. We conclude that TOM1L2 broadly enables the retrieval of UbK63-tagged proteins by the ciliary trafficking machinery.


Assuntos
Cílios , Receptores Acoplados a Proteínas G , Camundongos , Animais , Humanos , Cílios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transporte Proteico , Ubiquitina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mamíferos/metabolismo
3.
EMBO Rep ; 23(8): e54315, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35695071

RESUMO

The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.


Assuntos
Cistos , Doenças Renais Policísticas , Cílios/metabolismo , Cistos/metabolismo , Expressão Gênica , Humanos , Rim , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo
4.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33856408

RESUMO

The primary cilium is a signaling compartment that interprets Hedgehog signals through changes of its protein, lipid, and second messenger compositions. Here, we combine proximity labeling of cilia with quantitative mass spectrometry to unbiasedly profile the time-dependent alterations of the ciliary proteome in response to Hedgehog. This approach correctly identifies the three factors known to undergo Hedgehog-regulated ciliary redistribution and reveals two such additional proteins. First, we find that a regulatory subunit of the cAMP-dependent protein kinase (PKA) rapidly exits cilia together with the G protein-coupled receptor GPR161 in response to Hedgehog, and we propose that the GPR161/PKA module senses and amplifies cAMP signals to modulate ciliary PKA activity. Second, we identify the phosphatase Paladin as a cell type-specific regulator of Hedgehog signaling that enters primary cilia upon pathway activation. The broad applicability of quantitative ciliary proteome profiling promises a rapid characterization of ciliopathies and their underlying signaling malfunctions.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Células NIH 3T3 , Proteômica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
5.
Front Cell Dev Biol ; 9: 664279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912570

RESUMO

The primary cilium is a solitary, microtubule-based membrane protrusion extending from the surface of quiescent cells that senses the cellular environment and triggers specific cellular responses. The functions of primary cilia require not only numerous different components but also their regulated interplay. The cilium performs highly dynamic processes, such as cell cycle-dependent assembly and disassembly as well as delivery, modification, and removal of signaling components to perceive and process external signals. On a molecular level, these processes often rely on a stringent control of key modulatory proteins, of which the activity, localization, and stability are regulated by post-translational modifications (PTMs). While an increasing number of PTMs on ciliary components are being revealed, our knowledge on the identity of the modifying enzymes and their modulation is still limited. Here, we highlight recent findings on cilia-specific phosphorylation and ubiquitylation events. Shedding new light onto the molecular mechanisms that regulate the sensitive equilibrium required to maintain and remodel primary cilia functions, we discuss their implications for cilia biogenesis, protein trafficking, and cilia signaling processes.

6.
Pharmacol Ther ; 224: 107836, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33744260

RESUMO

The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.


Assuntos
Cílios , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G , Sistemas do Segundo Mensageiro
7.
Elife ; 92020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32579112

RESUMO

Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools to investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylyl cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.


Assuntos
Cílios/fisiologia , Optogenética , Transdução de Sinais/fisiologia , Anticorpos de Domínio Único , Animais , Cálcio/metabolismo , Linhagem Celular , Humanos , Camundongos , Análise de Célula Única
8.
Methods Mol Biol ; 2008: 29-39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31124086

RESUMO

Proximity labeling by ascorbate peroxidase (APEX) requires appropriate experimental setups that generate sufficient signal over background as a prerequisite for downstream analyses by mass spectrometry. Cell culture-based systems are easily accessible, yet, for proximity labeling of small structures must be carefully optimized in order to give satisfying results. How to establish and characterize APEX cell lines will be the topic of this chapter.


Assuntos
Ascorbato Peroxidases/química , Espectrometria de Massas , Proteômica/métodos , Coloração e Rotulagem/métodos , Animais , Humanos
9.
Nat Rev Mol Cell Biol ; 20(7): 389-405, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30948801

RESUMO

The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.


Assuntos
Movimento Celular/fisiologia , Cílios/metabolismo , Proteoma/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Cílios/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Humanos , Transporte Proteico/fisiologia , Proteoma/genética
10.
Mol Biol Cell ; 27(10): 1570-80, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27030670

RESUMO

The mitochondrial cytochrome c oxidase assembles in the inner membrane from subunits of dual genetic origin. The assembly process of the enzyme is initiated by membrane insertion of the mitochondria-encoded Cox1 subunit. During complex maturation, transient assembly intermediates, consisting of structural subunits and specialized chaperone-like assembly factors, are formed. In addition, cofactors such as heme and copper have to be inserted into the nascent complex. To regulate the assembly process, the availability of Cox1 is under control of a regulatory feedback cycle in which translation of COX1 mRNA is stalled when assembly intermediates of Cox1 accumulate through inactivation of the translational activator Mss51. Here we isolate a cytochrome c oxidase assembly intermediate in preparatory scale from coa1Δ mutant cells, using Mss51 as bait. We demonstrate that at this stage of assembly, the complex has not yet incorporated the heme a cofactors. Using quantitative mass spectrometry, we define the protein composition of the assembly intermediate and unexpectedly identify the putative methyltransferase Oms1 as a constituent. Our analyses show that Oms1 participates in cytochrome c oxidase assembly by stabilizing newly synthesized Cox1.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/metabolismo , Metiltransferases/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo
11.
Dev Cell ; 35(4): 497-512, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26585297

RESUMO

While cilia are recognized as important signaling organelles, the extent of ciliary functions remains unknown because of difficulties in cataloguing proteins from mammalian primary cilia. We present a method that readily captures rapid snapshots of the ciliary proteome by selectively biotinylating ciliary proteins using a cilia-targeted proximity labeling enzyme (cilia-APEX). Besides identifying known ciliary proteins, cilia-APEX uncovered several ciliary signaling molecules. The kinases PKA, AMPK, and LKB1 were validated as bona fide ciliary proteins and PKA was found to regulate Hedgehog signaling in primary cilia. Furthermore, proteomics profiling of Ift27/Bbs19 mutant cilia correctly detected BBSome accumulation inside Ift27(-/-) cilia and revealed that ß-arrestin 2 and the viral receptor CAR are candidate cargoes of the BBSome. This work demonstrates that proximity labeling can be applied to proteomics of non-membrane-enclosed organelles and suggests that proteomics profiling of cilia will enable a rapid and powerful characterization of ciliopathies.


Assuntos
Ascorbato Peroxidases/metabolismo , Cílios/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteoma/análise , Proteômica/métodos , Epitélio Pigmentado da Retina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Ascorbato Peroxidases/química , Transporte Biológico , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Proteínas Hedgehog/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Microscopia , Proteínas Associadas aos Microtúbulos/fisiologia , Dados de Sequência Molecular , Organelas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Epitélio Pigmentado da Retina/citologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Arrestina 2 , beta-Arrestinas , Proteínas rab de Ligação ao GTP/fisiologia
12.
Mol Cell Biol ; 33(20): 4128-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23979592

RESUMO

Cox1, the core subunit of the cytochrome c oxidase, receives two heme a cofactors during assembly of the 13-subunit enzyme complex. However, at which step of the assembly process and how heme is inserted into Cox1 have remained an enigma. Shy1, the yeast SURF1 homolog, has been implicated in heme transfer to Cox1, whereas the heme a synthase, Cox15, catalyzes the final step of heme a synthesis. Here we performed a comprehensive analysis of cytochrome c oxidase assembly intermediates containing Shy1. Our analyses suggest that Cox15 displays a role in cytochrome c oxidase assembly, which is independent of its functions as the heme a synthase. Cox15 forms protein complexes with Shy1 and also associates with Cox1-containing complexes independently of Shy1 function. These findings indicate that Shy1 does not serve as a mobile heme carrier between the heme a synthase and maturing Cox1 but rather cooperates with Cox15 for heme transfer and insertion in early assembly intermediates of cytochrome c oxidase.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sítios de Ligação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
13.
Cell ; 151(7): 1528-41, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260140

RESUMO

Mitochondrial respiratory-chain complexes assemble from subunits of dual genetic origin assisted by specialized assembly factors. Whereas core subunits are translated on mitochondrial ribosomes, others are imported after cytosolic translation. How imported subunits are ushered to assembly intermediates containing mitochondria-encoded subunits is unresolved. Here, we report a comprehensive dissection of early cytochrome c oxidase assembly intermediates containing proteins required for normal mitochondrial translation and reveal assembly factors promoting biogenesis of human respiratory-chain complexes. We find that TIM21, a subunit of the inner-membrane presequence translocase, is also present in the major assembly intermediates containing newly mitochondria-synthesized and imported respiratory-chain subunits, which we term MITRAC complexes. Human TIM21 is dispensable for protein import but required for integration of early-assembling, presequence-containing subunits into respiratory-chain intermediates. We establish an unexpected molecular link between the TIM23 transport machinery and assembly of respiratory-chain complexes that regulate mitochondrial protein synthesis in response to their assembly state.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Citosol/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Mitocôndrias/química , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Biossíntese de Proteínas
14.
Traffic ; 12(10): 1457-66, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21718401

RESUMO

Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA-specific activator proteins and occurs on membrane-associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K(+)/H(+) or Ca(2+)/H(+) antiporters in the inner membrane. Here, we identify the conserved ribosome-binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 Å resolution. Surprisingly, Mdm38(RBD) displays a 14-3-3-like fold despite any similarity to 14-3-3-proteins at the primary sequence level and thus represents the first 14-3-3-like protein in mitochondria. The 14-3-3-like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38Δ as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery.


Assuntos
Proteínas 14-3-3/química , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Plasmídeos , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Hum Mol Genet ; 20(12): 2379-93, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21470975

RESUMO

Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an Y(274)D exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y(344)) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Substituição de Aminoácidos/genética , Western Blotting , Linhagem Celular , Clonagem Molecular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Regulação Fúngica da Expressão Gênica/genética , Humanos , Imunoprecipitação , Mutação de Sentido Incorreto/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA
16.
Nat Rev Mol Cell Biol ; 12(1): 14-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21179059

RESUMO

Mitochondria maintain genome and translation machinery to synthesize a small subset of subunits of the oxidative phosphorylation system. To build up functional enzymes, these organellar gene products must assemble with imported subunits that are encoded in the nucleus. New findings on the early steps of cytochrome c oxidase assembly reveal how the mitochondrial translation of its core component, cytochrome c oxidase subunit 1 (Cox1), is directly coupled to the assembly of this respiratory complex.


Assuntos
DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Animais , DNA Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Modelos Biológicos , Biossíntese de Proteínas/genética
17.
J Cell Biol ; 191(1): 141-54, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20876281

RESUMO

Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation.


Assuntos
Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Biossíntese de Proteínas , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
Mol Biol Cell ; 21(12): 1937-44, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20427570

RESUMO

Biogenesis of respiratory chain complexes depends on the expression of mitochondrial-encoded subunits. Their synthesis occurs on membrane-associated ribosomes and is probably coupled to their membrane insertion. Defects in expression of mitochondrial translation products are among the major causes of mitochondrial disorders. Mdm38 is related to Letm1, a protein affected in Wolf-Hirschhorn syndrome patients. Like Mba1 and Oxa1, Mdm38 is an inner membrane protein that interacts with ribosomes and is involved in respiratory chain biogenesis. We find that simultaneous loss of Mba1 and Mdm38 causes severe synthetic defects in the biogenesis of cytochrome reductase and cytochrome oxidase. These defects are not due to a compromised membrane binding of ribosomes but the consequence of a mis-regulation in the synthesis of Cox1 and cytochrome b. Cox1 expression is restored by replacing Cox1-specific regulatory regions in the mRNA. We conclude, that Mdm38 and Mba1 exhibit overlapping regulatory functions in translation of selected mitochondrial mRNAs.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose/efeitos dos fármacos , Citocromos b/biossíntese , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Homeostase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nigericina/farmacologia , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
19.
Mol Cell Biol ; 30(1): 307-18, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19884344

RESUMO

Mitochondrial import of cleavable preproteins occurs at translocation contact sites, where the translocase of the outer membrane (TOM) associates with the presequence translocase of the inner membrane (TIM23) in a supercomplex. Different views exist on the mechanism of how TIM23 mediates preprotein sorting to either the matrix or inner membrane. On the one hand, two TIM23 forms were proposed, a matrix transport form containing the presequence translocase-associated motor (PAM; TIM23-PAM) and a sorting form containing Tim21 (TIM23(SORT)). On the other hand, it was reported that TIM23 and PAM are permanently associated in a single-entity translocase. We have accumulated distinct transport intermediates of preproteins to analyze the translocases in their active, preprotein-carrying state. We identified two different forms of active TOM-TIM23 supercomplexes, TOM-TIM23(SORT) and TOM-TIM23-PAM. These two supercomplexes do not represent separate pathways but are in dynamic exchange during preprotein translocation and sorting. Depending on the signals of the preproteins, switches between the different forms of supercomplex and TIM23 are required for the completion of preprotein import.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Mitocondriais/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Complexos Multiproteicos , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
20.
Biochim Biophys Acta ; 1793(1): 52-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18590776

RESUMO

The mitochondrial inner membrane has a central function for the energy metabolism of the cell. The respiratory chain generates a proton gradient across the inner mitochondrial membrane, which is used to produce ATP by the F1Fo-ATPase. To maintain the electrochemical gradient, the inner membrane represents an efficient permeability barrier for small molecules. Nevertheless, metabolites as well as polypeptide chains need to be transported across the inner membrane while the electrochemical gradient is retained. While specialized metabolite carrier proteins mediate the transport of small molecules, dedicated protein translocation machineries in the inner mitochondrial membrane (so called TIM complexes) transport precursor proteins across the inner membrane. Here we describe the organization of the TIM complexes and discuss the current models as to how they mediate the posttranslational import of proteins across and into the inner mitochondrial membrane.


Assuntos
Proteínas de Transporte/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Precursores de Proteínas/metabolismo , Animais , Transporte Biológico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , Subunidades Proteicas/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...