Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503881

RESUMO

SLC38A6 (SNAT6) is the only known member of the SLC38 family that is expressed exclusively in the excitatory neurons of the brain. It has been described as an orphan transporter with an unknown substrate profile, therefore very little is known about SNAT6. In this study, we addressed the substrate specificity, mechanisms for internalization of SNAT6, and the regulatory role of SNAT6 with specific insights into the glutamate-glutamine cycle. We used tritium-labeled amino acids in order to demonstrate that SNAT6 is functioning as a glutamine and glutamate transporter. SNAT6 revealed seven predicted transmembrane segments in a homology model and was localized to caveolin rich sites at the plasma membrane. SNAT6 has high degree of specificity for glutamine and glutamate. Presence of these substrates enables formation of SNAT6-caveolin complexes that aids in sodium dependent trafficking of SNAT6 off the plasma membrane. To further understand its mode of action, several potential interacting partners of SNAT6 were identified using bioinformatics. Among them where CTP synthase 2 (CTPs2), phosphate activated glutaminase (Pag), and glutamate metabotropic receptor 2 (Grm2). Co-expression analysis, immunolabeling with co-localization analysis and proximity ligation assays of these three proteins with SNAT6 were performed to investigate possible interactions. SNAT6 can cycle between cytoplasm and plasma membrane depending on availability of substrates and interact with Pag, synaptophysin, CTPs2, and Grm2. Our data suggest a potential role of SNAT6 in glutamine uptake at the pre-synaptic terminal of excitatory neurons. We propose here a mechanistic model of SNAT6 trafficking that once internalized influences the glutamate-glutamine cycle in presence of its potential interacting partners.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Caveolinas/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Caveolinas/química , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA Interferente Pequeno/genética , Transdução de Sinais , Sódio/metabolismo , Relação Estrutura-Atividade
2.
Am J Pathol ; 190(10): 1984-1999, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32735890

RESUMO

Retinoic acid-related orphan receptor (ROR)-γt, the master transcription factor of the Th17 subset of CD4+ Th cells, is a promising target for treating a host of autoimmune diseases. RORγt plays a vital role in the pathogenesis of inflammatory bowel diseases-Crohn disease and ulcerative colitis-caused by untoward reactivity of the immune system to the components of the intestinal microbiome. The mammalian intestinal tract is a highly complex and compartmentalized organ with specialized functions, and is a privileged site for the generation of both peripherally induced regulatory CD4+ T cells (Tregs) and effector Th17 cells. As Th17 cells can be proinflammatory in nature, the equilibrium between effector Th17 and Treg cells is crucial for balancing intestinal homeostasis and inflammation. Recent findings suggest that RORγt, in addition to Th17 cells, is also expressed in peripherally induced, colonic regulatory CD4+ T cells. Therefore, RORγt is expressed in both effector and regulatory subsets of CD4+ T cells in the intestine. The present review discusses the role of RORγt in cellular and molecular differentiation of Th17 and Treg, and examines how targeting RORγt in inflammatory bowel disease therapy could influence the development of these two diverse subsets of immune cells with opposing functions.


Assuntos
Homeostase/imunologia , Inflamação/imunologia , Inflamação/patologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Animais , Diferenciação Celular/imunologia , Humanos , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
3.
Proc Natl Acad Sci U S A ; 115(10): E2348-E2357, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467291

RESUMO

Advanced age is not only a major risk factor for a range of disorders within an aging individual but may also enhance susceptibility for disease in the next generation. In humans, advanced paternal age has been associated with increased risk for a number of diseases. Experiments in rodent models have provided initial evidence that paternal age can influence behavioral traits in offspring animals, but the overall scope and extent of paternal age effects on health and disease across the life span remain underexplored. Here, we report that old father offspring mice showed a reduced life span and an exacerbated development of aging traits compared with young father offspring mice. Genome-wide epigenetic analyses of sperm from aging males and old father offspring tissue identified differentially methylated promoters, enriched for genes involved in the regulation of evolutionarily conserved longevity pathways. Gene expression analyses, biochemical experiments, and functional studies revealed evidence for an overactive mTORC1 signaling pathway in old father offspring mice. Pharmacological mTOR inhibition during the course of normal aging ameliorated many of the aging traits that were exacerbated in old father offspring mice. These findings raise the possibility that inherited alterations in longevity pathways contribute to intergenerational effects of aging in old father offspring mice.


Assuntos
Envelhecimento/genética , Epigênese Genética , Longevidade , Fatores Etários , Envelhecimento/fisiologia , Animais , Metilação de DNA , Pai , Feminino , Humanos , Expectativa de Vida , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Linhagem , Regiões Promotoras Genéticas , Espermatozoides/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-27614546

RESUMO

The comparative genomics between different rhodopsin-like family groups (α, ß, γ and δ) is not well studied. We used a combination of phylogenetic analysis and statistical genomic methods to compare rhodopsin-like family proteins in species likely symbolic of this family's evolutionary progression. For intra-cluster relationships, we applied mathematical optimisation to enhance the tree search produced by the neighbour joining method (NJ) and compared it with maximum likelihood (ML) method. To infer inter-clusters relationships, we used Needleman-Wunsch analysis (NW), HHsearch, ancestral sequence reconstruction and phylogenetic network analysis. Using this workflow, we were able to identify key evolutionary events in the rhodopsin-like family receptors. We found that α rhodopsin-like group gave rise to the ß group, while the γ rhodopsin-like group diverged from the ß group. We tracked the diversification of every cluster, revealing that fungal opsin is the most ancient member of the α group, while adenosine receptors could be the first member to diverge in the MECA (melanocortin, endothelial differentiation sphingolipid, cannabinoid, and adenosine receptors) subfamily and that histamine receptors could be the parent of the amines receptors, while hypocretin receptors might be the most ancient member of the ß group. SOG (somatostatin, opioid, galanin) receptors formed the most ancient members of the γ group. Our analysis indicated that basal receptors might be playing a role in early evolution of the nervous system. This is evident in Trichoplax adhaerens genome, where we located histamine receptors and adenosine receptors.


Assuntos
Evolução Molecular , Genoma/genética , Genômica/métodos , Rodopsina/classificação , Rodopsina/genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA