Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(19)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38316043

RESUMO

The structural properties of a typical solid electrolyte system (2Li2S-GeS2) is investigated from First principles molecular dynamics simulations. Results reveal that depolymerization of the base GeS2network by alkali additives takes place but appears reduced with respect to the corresponding sodium analog glass. Experimental structure functions are reproduced and reveal that the network is dominated by GeS4/2tetrahedra that are connected by edges (four-membered rings) and corners and disrupted by the addition of lithium, albeit a non-negligible fraction of connecting tetrahedra (Q2units) are still present in the glass structure. Dynamic and electric properties are also studied and emphasize that the size of the migrating cation (Li) is essential for ensuring a good level of ionic conductivity as it displays increased values with respect to the parent Na-bearing system. On the atomic (picosecond) timescale, different typical Li trajectories are identified and their distribution calculated: reduced cage-like motion in pockets constrained by the surrounding (Ge,S) network, back and forth jump motions with short transition states and long-range filamentary motion.

2.
J Chem Phys ; 151(22): 224508, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837684

RESUMO

The structural properties of glassy diboron trioxide, g-B2O3, are investigated from ambient to high pressure conditions using two types of atomic force-field models that account for many-body effects. These models are parameterized by a dipole- and force-fitting procedure of reference datasets created via first-principles calculations on a series of configurations. The predictions of the models are tested against experimental data, where particular attention is paid to the structural transitions in g-B2O3 that involve changes to both the short- and medium-range order. The models outperform those previously devised, where improvement originates from the incorporation of two key physical ingredients, namely, (i) the polarizability of the oxide ion and (ii) the ability of an oxide ion to change both size and shape in response to its coordination environment. The results highlight the importance of many-body effects for accurately modeling this challenging system.

3.
J Chem Phys ; 148(24): 244505, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960301

RESUMO

There is much to learn from simulation studies of polyamorphism achieved for systems with different bonding environments. Chalcogenide glasses such as Ge-Se glasses undergo an elastic phase transition involving important changes in network connectivity. Stimulated by recent developments of topological constraint theory, we show that the concept of rigidity can be extended to a broader range of thermodynamic conditions including densified glasses. After having validated our structural first principles molecular dynamics models with experimental data over a broad pressure range for GeSe4, we show that the onset of polyamorphism is strongly related to the constraint density measuring the degree of rigidity of the network backbone, while voids and cavities in the structure collapse at very small pressures. This leads to the identification that the progressive onset of higher coordinated species typical of high pressure phases is responsible for the onset of stressed rigidity, although the constraint analysis also indicates progressive stiffening of bonding angles. Results are compared to stoichiometric and stressed rigid GeSe2 and to isostatic As2Se3 and then generalized to other compositions in the Ge-Se binary under pressure.

4.
Adv Sci (Weinh) ; 5(5): 1700850, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876211

RESUMO

Melting presents one of the most prominent phenomena in condensed matter science. Its microscopic understanding, however, is still fragmented, ranging from simplistic theory to the observation of melting point depressions. Here, a multimethod experimental approach is combined with computational simulation to study the microscopic mechanism of melting between these two extremes. Crystalline structures are exploited in which melting occurs into a metastable liquid close to its glass transition temperature. The associated sluggish dynamics concur with real-time observation of homogeneous melting. In-depth information on the structural signature is obtained from various independent spectroscopic and scattering methods, revealing a step-wise nature of the transition before reaching the liquid state. A kinetic model is derived in which the first reaction step is promoted by local instability events, and the second is driven by diffusive mobility. Computational simulation provides further confirmation for the sequential reaction steps and for the details of the associated structural dynamics. The successful quantitative modeling of the low-temperature decelerated melting of zeolite crystals, reconciling homogeneous with heterogeneous processes, should serve as a platform for understanding the inherent instability of other zeolitic structures, as well as the prolific and more complex nanoporous metal-organic frameworks.

5.
Sci Rep ; 6: 27317, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273197

RESUMO

Pressure induced structural modifications in vitreous GexSe100-x (where 10 ≤ x ≤ 25) are investigated using X-ray absorption spectroscopy (XAS) along with supplementary X-ray diffraction (XRD) experiments and ab initio molecular dynamics (AIMD) simulations. Universal changes in distances and angle distributions are observed when scaled to reduced densities. All compositions are observed to remain amorphous under pressure values up to 42 GPa. The Ge-Se interatomic distances extracted from XAS data show a two-step response to the applied pressure; a gradual decrease followed by an increase at around 15-20 GPa, depending on the composition. This increase is attributed to the metallization event that can be traced with the red shift in Ge K edge energy which is also identified by the principal peak position of the structure factor. The densification mechanisms are studied in details by means of AIMD simulations and compared to the experimental results. The evolution of bond angle distributions, interatomic distances and coordination numbers are examined and lead to similar pressure-induced structural changes for any composition.

6.
J Chem Phys ; 144(22): 224503, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27306014

RESUMO

We investigate the dynamical properties of liquid GexSe100-x as a function of Ge content by first-principles molecular dynamic simulations for a certain number of temperatures in the liquid state. The focus is set on ten compositions (where x ≤ 33%) encompassing the reported flexible to rigid and rigid to stressed-rigid transitions. We examine diffusion coefficients, diffusion activation energies, glassy relaxation behavior, and viscosity of these liquids from Van Hove correlation and intermediate scattering functions. At fixed temperature, all properties/functions exhibit an anomalous behavior with Ge content in the region 18%-22%, and provide a direct and quantitative link to the network rigidity.

7.
Rep Prog Phys ; 79(6): 066504, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27213928

RESUMO

Recent progress in the description of glassy relaxation and aging are reviewed for the wide class of network-forming materials such as GeO2, Ge x Se1-x , silicates (SiO2-Na2O) or borates (B2O3-Li2O), all of which have an important usefulness in domestic, geological or optoelectronic applications. A brief introduction of the glass transition phenomenology is given, together with the salient features that are revealed both from theory and experiments. Standard experimental methods used for the characterization of the slowing down of the dynamics are reviewed. We then discuss the important role played by aspects of network topology and rigidity for the understanding of the relaxation of the glass transition, while also permitting analytical predictions of glass properties from simple and insightful models based on the network structure. We also emphasize the great utility of computer simulations which probe the dynamics at the molecular level, and permit the calculation of various structure-related functions in connection with glassy relaxation and the physics of aging which reveal the non-equilibrium nature of glasses. We discuss the notion of spatial variations of structure which leads to the concept of 'dynamic heterogeneities', and recent results in relation to this important topic for network glasses are also reviewed.

8.
J Chem Phys ; 136(22): 224504, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22713054

RESUMO

The structural properties of liquid GeSe(2) have been calculated by first-principles molecular dynamics by using a periodic simulation box containing N = 480 atoms. This has allowed a comparison with previous results obtained on a smaller system size (N = 120) [M. Micoulaut, R. Vuilleumier, and C. Massobrio, Phys. Rev. B 79, 214205 (2009)]. In the domain of first-principles molecular dynamics, we obtain an assessment of system size effects of unprecedented quality. Overall, no drastic differences are found between the two sets of results, confirming that N = 120 is a suitable size to achieve a realistic description of this prototypical disordered network. However, for N = 480, short range properties are characterized by an increase of chemical order, the number of Ge tetrahedra coordinated to four Se atoms being larger. At the intermediate range order level, size effect mostly modify the low wavevector region (k ~1 Å(-1)) in the concentration-concentration partial structure factor.

9.
J Phys Condens Matter ; 22(28): 285101, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21399290

RESUMO

A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.


Assuntos
Vidro/química , Modelos Químicos , Oscilometria/métodos , Temperatura Baixa , Simulação por Computador , Transferência de Energia , Transição de Fase
10.
J Phys Condens Matter ; 21(20): 205106, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21825525

RESUMO

Raman scattering, IR reflectance and modulated-DSC measurements are performed on specifically prepared dry (AgI)(x)(AgPO(3))(1-x) glasses over a wide range of compositions 0%37.8% are elastically flexible. Raman optical elasticity power laws, trends in the nature of the glass transition endotherms, corroborate the three elastic phase assignments. Ionic conductivities reveal a step-like increase when glasses become stress-free at x>x(c)(1) = 9.5% and a logarithmic increase in conductivity (σ∼(x-x(c)(2))(µ)) once they become flexible at x>x(c)(2) = 37.8% with a power law µ = 1.78. The power law is consistent with percolation of 3D filamentary conduction pathways. Traces of water doping lower T(g) and narrow the reversibility window, and can also completely collapse it. Ideas on network flexibility promoting ion conduction are in harmony with the unified approach of Ingram et al (2008 J. Phys. Chem. B 112 859), who have emphasized the similarity of process compliance or elasticity relating to ion transport and structural relaxation in decoupled systems. Boson mode frequency and scattering strength display thresholds that coincide with the two elastic phase boundaries. In particular, the scattering strength of the boson mode increases almost linearly with glass composition x, with a slope that tracks the floppy mode fraction as a function of mean coordination number r predicted by mean-field rigidity theory. These data suggest that the excess low frequency vibrations contributing to the boson mode in flexible glasses come largely from floppy modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA