Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Anat Sci Educ ; 16(5): 802-813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332120

RESUMO

The COVID-19 pandemic severely affected the medical education worldwide. The infection risk for medical students and healthcare personnel who work with COVID-19 positive cadavers or tissues remains unclear. Moreover, COVID-19 positive cadavers have been rejected by medical schools, adversely impacting the continuum of medical education. Herein, the viral genome abundance in tissues from four COVID-19 positive donors before and after embalming were compared. Tissue samples were collected from the lungs, liver, spleen, and brain both pre- and postembalming. The possible presence of infectious COVID-19 was determined by inoculating human tissue homogenates onto a monolayer of human A549-hACE2 cells and observing for cytopathic effects up to 72 h postinoculation. A real- time quantitative reverse transcription polymerase chain reaction was performed to quantify COVID-19 present in culture supernatants. Fully intact viral genome sequence was possible to obtain in samples with higher levels of virus, even several days postmortem. The embalming procedure described above substantially reduces the abundance of viable COVID-19 genomes in all tissues, sometimes even to undetectable levels. However, in some cases, COVID-19 RNA can still be detected, and a cytopathic effect can be seen both pre- and postembalmed tissues. This study suggests that embalmed COVID-19 positive cadavers might be used safely with appropriate precautions followed in gross anatomy laboratories and in clinical and scientific research. Deep lung tissue is the best specimen to test for the virus. If the tests on the lung tissues are negative, there is a very low likelihood that other tissues will show positive results.


Assuntos
Anatomia , COVID-19 , Humanos , SARS-CoV-2 , Embalsamamento/métodos , Pandemias , Anatomia/educação , Cadáver
2.
Elife ; 122023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129366

RESUMO

Mitochondrial biogenesis requires the import of >1,000 mitochondrial preproteins from the cytosol. Most studies on mitochondrial protein import are focused on the core import machinery. Whether and how the biophysical properties of substrate preproteins affect overall import efficiency is underexplored. Here, we show that protein traffic into mitochondria can be disrupted by amino acid substitutions in a single substrate preprotein. Pathogenic missense mutations in ADP/ATP translocase 1 (ANT1), and its yeast homolog ADP/ATP carrier 2 (Aac2), cause the protein to accumulate along the protein import pathway, thereby obstructing general protein translocation into mitochondria. This impairs mitochondrial respiration, cytosolic proteostasis, and cell viability independent of ANT1's nucleotide transport activity. The mutations act synergistically, as double mutant Aac2/ANT1 causes severe clogging primarily at the translocase of the outer membrane (TOM) complex. This confers extreme toxicity in yeast. In mice, expression of a super-clogger ANT1 variant led to neurodegeneration and an age-dependent dominant myopathy that phenocopy ANT1-induced human disease, suggesting clogging as a mechanism of disease. More broadly, this work implies the existence of uncharacterized amino acid requirements for mitochondrial carrier proteins to avoid clogging and subsequent disease.


Inside our cells, compartments known as mitochondria generate the chemical energy required for life processes to unfold. Most of the proteins found within mitochondria are manufactured in another part of the cell (known as the cytosol) and then imported with the help of specialist machinery. For example, the TOM and TIM22 channels provide a route for the proteins to cross the two membrane barriers that separate the cytosol from the inside of a mitochondrion. ANT1 is a protein that is found inside mitochondria in humans, where it acts as a transport system for the cell's energy currency. Specific mutations in the gene encoding ANT1 have been linked to degenerative conditions that affect the muscles and the brain. However, it remains unclear how these mutations cause disease. To address this question, Coyne et al. recreated some of the mutations in the gene encoding the yeast equivalent of ANT1 (known as Aac2). Experiments in yeast cells carrying these mutations showed that the Aac2 protein accumulated in the TOM and TIM22 channels, creating a 'clog' that prevented other essential proteins from reaching the mitochondria. As a result, the yeast cells died. Mutant forms of the human ANT1 protein also clogged up the TOM and TIM22 channels of human cells in a similar way. Further experiments focused on mice genetically engineered to produce a "super-clogger" version of the mouse equivalent of ANT1. The animals soon developed muscle and neurological conditions similar to those observed in human diseases associated with ANT1. The findings of Coyne et al. suggest that certain genetic mutations in the gene encoding the ANT1 protein cause disease by blocking the transport of other proteins to the mitochondria, rather than by directly affecting ANT1's nucleotide trnsport role in the cell. This redefines our understanding of diseases associated with mitochondrial proteins, potentially altering how treatments for these conditions are designed.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Camundongos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Transporte/metabolismo , Transporte Proteico , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
3.
medRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945553

RESUMO

Introduction: In the personalized risk quantification of chronic obstructive pulmonary disease (COPD), genome-wide association studies and polygenic risk scores (PRS) complement traditional risk factors, such as age and cigarette smoking. However, despite being at considerable levels of risk, some individuals do not develop COPD. Research on COPD resilience remains largely unexplored. Methods: We applied the previously published COPD PRS to whole genome sequencing data from non-Hispanic white and African American individuals in the COPDGene study. We defined genetic resilience as individuals unaffected by COPD with a polygenic risk score above the 90 th percentile. We defined risk-matched case individuals as those with COPD (i.e., FEV 1 /FVC < 0.70) and a PRS above the 90 th percentile. We defined low risk individuals without COPD (i.e., FEV 1 /FVC > 0.70) as a polygenic risk score below the 10 th percentile. We compared genetically resilient individuals to risk-matched individuals with COPD and low risk individuals by demographics, lung function, respiratory symptoms, co-morbidities, and chest CT scan measurements. We also performed survival analyses, differential expression analysis, and matching for sensitivity analyses. Results: We identified 211 resilient individuals without COPD, 605 genetic risk-matched individuals with COPD, and 527 low-risk individuals without COPD. Resilient individuals had higher FEV 1 % predicted and lower percent emphysema. In contrast, resilient individuals had higher airway wall thickness compared to low-risk unaffected individuals. While there was no difference in survival between low-risk and resilient individuals, resilient individuals had higher survival compared to risk matched cases. We also identified two genes that were differentially expressed between low-risk unaffected individuals and resilient individuals. Conclusion: Genetically resilient individuals had a reduced burden of COPD disease-related measures compared to risk-matched cases but had subtly increased measures compared to low-risk unaffected individuals. Further genetic studies will be needed to illuminate the underlying pathobiology of our observations.

4.
Brain Behav Immun ; 111: 186-201, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958512

RESUMO

In addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events. Here, we investigate how mRNA and protein levels of key cytokines and cytokine receptors change during postnatal development of the human prefrontal cortex. We find that most cytokine transcripts investigated (IL1B, IL18, IL6, TNF, IL13) are lowest at birth and increase between 1.5 and 5 years old. After 5 years old, transcriptional patterns proceeded in one of two directions: decreased expression in teens and young adults (IL1B, p = 0.002; and IL18, p = 0.004) or increased mean expression with maturation, particularly in teenagers (IL6, p = 0.004; TNF, p = 0.002; IL13, p < 0.001). In contrast, cytokine proteins tended to remain elevated after peaking significantly around 3 years of age (IL1B, p = 0.012; IL18, p = 0.026; IL6, p = 0.039; TNF, p < 0.001), with TNF protein being highest in teenagers. An mRNA-only analysis of cytokine receptor transcripts found that early developmental increases in cytokines were paralleled by increases in their ligand-binding receptor subunits, such as IL1R1 (p = 0.033) and IL6R (p < 0.001) transcripts. In contrast, cytokine receptor-associated signaling subunits, IL1RAP and IL6ST, did not change significantly between age groups. Of the two TNF receptors, the 'pro-death' TNFRSF1A and 'pro-survival' TNFRSF1B, only TNFRSF1B was significantly changed (p = 0.028), increasing first in toddlers and again in young adults. Finally, the cytokine inhibitor, IL13, was elevated first in toddlers (p = 0.006) and again in young adults (p = 0.053). While the mean expression of interleukin-1 receptor antagonist (IL1RN) was highest in toddlers, this increase was not statistically significant. The fluctuations in cytokine expression reported here support a role for increases in specific cytokines at two different stages of human cortical development. The first is during the toddler/preschool period (IL1B, IL18, and IL13), and the other occurs at adolescence/young adult maturation (IL6, TNF and IL13).


Assuntos
Citocinas , Interleucina-6 , Feminino , Gravidez , Recém-Nascido , Adulto Jovem , Adolescente , Humanos , Pré-Escolar , Lactente , Citocinas/metabolismo , Interleucina-6/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Córtex Pré-Frontal Dorsolateral , Interleucina-13 , Interleucina-18/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , RNA Mensageiro
5.
Brain Behav Immun ; 111: 46-60, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36972743

RESUMO

Transcript levels of cytokines and SERPINA3 have been used to define a substantial subset (40%) of individuals with schizophrenia with elevated inflammation and worse neuropathology in the dorsolateral prefrontal cortex (DLPFC). In this study, we tested if inflammatory proteins are likewise related to high and low inflammatory states in the human DLFPC in people with schizophrenia and controls. Levels of inflammatory cytokines (IL6, IL1ß, IL18, IL8) and a macrophage marker (CD163 protein) were measured in brains obtained from the National Institute of Mental Health (NIMH) (N = 92). First, we tested for diagnostic differences in protein levels overall, then we determined the percentage of individuals that could be defined as "high" inflammation using protein levels. IL-18 was the only cytokine to show increased expression in schizophrenia compared to controls overall. Interestingly, two-step recursive clustering analysis showed that IL6, IL18, and CD163 protein levels could be used as predictors of "high and low" inflammatory subgroups. By this model, a significantly greater proportion of schizophrenia cases (18/32; 56.25%; SCZ) were identified as belonging to the high inflammatory (HI) subgroup compared to control cases (18/60; 30%; CTRL) [χ2(1) = 6.038, p = 0.014]. When comparing across inflammatory subgroups, IL6, IL1ß, IL18, IL8, and CD163 protein levels were elevated in both SCZ-HI and CTRL-HI compared to both low inflammatory subgroups (all p < 0.05). Surprisingly, TNFα levels were significantly decreased (-32.2%) in schizophrenia compared to controls (p < 0.001), and were most diminished in the SCZ-HI subgroup compared to both CTRL-LI and CTRL-HI subgroups (p < 0.05). Next, we asked if the anatomical distribution and density of CD163+ macrophages differed in those with schizophrenia and high inflammation status. Macrophages were localized to perivascular sites and found surrounding small, medium and large blood vessels in both gray matter and white matter, with macrophage density highest at the pial surface in all schizophrenia cases examined. A higher density of CD163+ macrophages, that were also larger and more darkly stained, was found in the SCZ-HI subgroup (+154% p < 0.05). We also confirmed the rare existence of parenchymal CD163+ macrophages in both high inflammation subgroups (schizophrenia and controls). Brain CD163+ cell density around blood vessels positively correlated with CD163 protein levels. In conclusion, we find a link between elevated interleukin cytokine protein levels, decreased TNFα protein levels, and elevated CD163+ macrophage densities especially along small blood vessels in those with neuroinflammatory schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Interleucina-18 , Fator de Necrose Tumoral alfa , Microglia/metabolismo , Interleucina-6 , Interleucina-8 , Macrófagos/metabolismo , Inflamação , Citocinas/metabolismo
6.
Front Oncol ; 12: 1014749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303838

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.

7.
Viruses ; 14(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891563

RESUMO

Powassan virus (POWV) is a tick-borne neuroinvasive flavivirus endemic to North America. It is generally transmitted by the tick, Ixodes scapularis. This species also transmits Borrelia burgdorferi, the causative agent of Lyme disease. Infection with B. burgdorferi can result in arthritis, carditis, and neuroborreliosis. These pathogens experience sylvatic overlap. To determine the risk of human exposure to coinfected ticks, the interactions between POWV and B. burgdorferi are assessed in laboratory-infected I. scapularis. Adult male and female I. scapularis ticks are orally inoculated with either both pathogens, POWV only, B. burgdorferi only, or uninfected media. After twenty-one days, the ticks are dissected, and RNA is extracted from their midguts and salivary glands. In infected midguts, the quantity of POWV in coinfected ticks was elevated compared to those with only POWV. In addition, the salivary glands of ticks with infected midguts had increased POWV dissemination to those with only POWV. RNA sequencing is performed to identify the potential mechanism for this pattern, which varies between the organs. Ixodes scapularis ticks are found to be capable of harboring both POWV and B. burgdorferi with a benefit to POWV replication and dissemination.


Assuntos
Borrelia burgdorferi , Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Doença de Lyme , Animais , Borrelia burgdorferi/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Feminino , Humanos , Masculino , Glândulas Salivares
8.
Front Neurosci ; 16: 858989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844224

RESUMO

Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation. To test whether microglia and/or macrophages are associated with increased inflammatory signaling in schizophrenia, we measured microglia- and macrophage-associated transcripts in the postmortem dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both groups were stratified by neuroinflammatory status based on cortical mRNA levels of cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged (IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels were increased in patients, substantially so in the high inflammation schizophrenia subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast, high inflammation controls did not have elevated CD163 mRNA compared to low inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64 mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in the high inflammation schizophrenia subgroup compared to high inflammation controls, while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs) were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001). Collectively, our findings support the co-existence of quiescent microglia and increased pro-inflammatory macrophages in the cortex of people with schizophrenia.

9.
J Mol Diagn ; 24(4): 294-308, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124239

RESUMO

Following the outbreak and subsequent pandemic of coronavirus disease 2019 (COVID-19), clinical diagnostic laboratories worldwide sought accurate and reliable testing methodologies. However, many laboratories were and still are hindered by a number of factors, including an unprecedented demand for testing, reagent and laboratory supply shortages and availability of qualified staff. To respond to these concerns, two separate laboratory-developed tests were validated for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using two different specimen types. In addition, these assays target different genomic regions of SARS-CoV-2, allowing for viral detection and mitigating genetic variation. Lower limit of detection and clinical evaluation studies showed detection of SARS-CoV-2 at 500 cp/mL with nasopharyngeal and saliva samples. These multiplexed RT-qPCR assays, although based on modified CDC, New York State Department of Health, and World Health Organization Emergency Use Authorization tests, allow for higher throughput and rapid turnaround time, benefiting patients, clinicians, and communities as a whole. These cost-effective tests also use readily obtainable reagents, circumventing commercial assay supply chain issues. The laboratory-developed tests described here have improved patient care and are highly adaptable should the need arise at other clinical diagnostic laboratories. Furthermore, the foundation and design of these assays may be modified in the future for detection of COVID-19 variants or other RNA-based viral detection tests.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genômica , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
10.
iScience ; 25(1): 103715, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072007

RESUMO

Mitochondrial dysfunction causes muscle wasting in many diseases and probably also during aging. The underlying mechanism is poorly understood. We generated transgenic mice with unbalanced mitochondrial protein loading and import, by moderately overexpressing the nuclear-encoded adenine nucleotide translocase, Ant1. We found that these mice progressively lose skeletal muscle. Ant1-overloading reduces mitochondrial respiration. Interestingly, it also induces small heat shock proteins and aggresome-like structures in the cytosol, suggesting increased proteostatic burden due to accumulation of unimported mitochondrial preproteins. The transcriptome of Ant1-transgenic muscles is drastically remodeled to counteract proteostatic stress, by repressing protein synthesis and promoting proteasomal function, autophagy, and lysosomal amplification. These proteostatic adaptations collectively reduce protein content thereby reducing myofiber size and muscle mass. Thus, muscle wasting can occur as a trade-off of adaptation to mitochondria-induced proteostatic stress. This finding could have implications for understanding the mechanism of muscle wasting, especially in diseases associated with Ant1 overexpression, including facioscapulohumeral dystrophy.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34025747

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a complex neurological condition with increasing prevalence. Few tools accurately predict the developmental trajectory of children with ASD. Such tools would allow clinicians to provide accurate prognoses and track the efficacy of therapeutic interventions. Salivary RNAs that reflect the genetic-environmental interactions underlying ASD may provide objective measures of symptom severity and developmental outcomes. This study investigated whether salivary RNAs previously identified in childhood ASD remain perturbed in older children. We also explored whether RNA candidates changed with therapeutic intervention. METHOD: A case-control design was used to characterize levels of 78 saliva RNA candidates among 96 children (48 ASD, 48 non-ASD, mean age: 11 years). Thirty-one children (22 ASD, 9 non-ASD developmental delay, mean age: 4 years) were followed longitudinally to explore changes of RNA candidates during early intervention. Saliva RNA and standardized behavioral assessments were collected for each participant. Associations between candidate RNAs and behavioral scores were determined in both groups via Spearman Correlation. Changes in candidate RNAs across two time-points were assessed in the younger cohort via Wilcoxon rank-sum test. RESULTS: Seven RNAs were associated with VABS-II and BASC scores in the older group ([R] >0.25, FDR< 0.15). Within the younger cohort, 12 RNAs displayed significant changes over time (FDR< 0.05). Three microRNAs were associated with behavioral scores and changed over time (miR-182-5p, miR-146b-5p, miR-374a-5p). CONCLUSION: Several salivary RNAs are strongly associated with autistic behaviors in older individuals with ASD and change as early as three months after therapy initiation in younger children. These molecules could be used to track treatment effectiveness and provide prognoses. Further validation is necessary.

12.
Autism Res ; 14(6): 1271-1283, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682319

RESUMO

Challenges associated with the current screening and diagnostic process for autism spectrum disorder (ASD) in the US cause a significant delay in the initiation of evidence-based interventions at an early age when treatments are most effective. The present study shows how implementing a second-order diagnostic measure to high risk cases initially flagged positive from screening tools can further inform clinical judgment and substantially improve early identification. We use two example measures for the purposes of this demonstration; a saliva test and eye-tracking technology, both scalable and easy-to-implement biomarkers recently introduced in ASD research. Results of the current cost-savings analysis indicate that lifetime societal cost savings in special education, medical and residential care are estimated to be nearly $580,000 per ASD child, with annual cost savings in education exceeding $13.3 billion, and annual cost savings in medical and residential care exceeding $23.8 billion (of these, nearly $11.2 billion are attributable to Medicaid). These savings total more than $37 billion/year in societal savings in the US. Initiating appropriate interventions faster and reducing the number of unnecessary diagnostic evaluations can decrease the lifetime costs of ASD to society. We demonstrate the value of implementing a scalable highly accurate diagnostic in terms of cost savings to the US. LAY SUMMARY: This paper demonstrates how biomarkers with high accuracy for detecting autism spectrum disorder (ASD) could be used to increase the efficiency of early diagnosis. Results also show that, if more children with ASD are identified early and referred for early intervention services, the system would realize substantial costs savings across the lifespan.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico , Biomarcadores , Criança , Diagnóstico Precoce , Humanos , Programas de Rastreamento , Estados Unidos
13.
Front Psychiatry ; 12: 824933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126215

RESUMO

Gastrointestinal (GI) disorders are common in children with neurodevelopmental disorders such as autism spectrum disorder (ASD). A limited understanding of the biologic factors that predispose this population to GI disorders has prevented development of individualized therapies to address this important medical issue. The goal of the current study was to determine if elements of the salivary micro-transcriptome could provide insight into the biologic perturbations unique to children with ASD-related GI disturbance. This cohort study included 898 children (ages 18-73 months) with ASD, non-ASD developmental delay (DD), or typical development (TD). The saliva micro-transcriptome of each child was assessed with RNA-seq. Outputs were aligned to microbial and human databases. A Kruskal Wallis analysis of variance (ANOVA) was used to compare levels of 1821 micro-transcriptome features across neurodevelopmental status (ASD, DD, or TD) and GI presence or absence. An ANOVA was also used to compare micro-transcriptome levels among GI sub-groups (constipation, reflux, food intolerance, other GI condition, no GI condition), and to identify RNAs that differed among children taking three common GI medications (probiotics, reflux medication, or laxatives). Relationships between features identified in ANOVA testing were examined for associations with scores on the Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-2) and the Vineland Adaptive Behavior Scales. GI disturbance rates were higher among children with ASD than peers with TD but were similar to those with DD. Five piwi-interacting RNAs and three microbial RNAs displayed an interaction between developmental status and GI disturbance. Fifty-seven salivary RNAs differed between GI sub-groups-with microRNA differences between food intolerance and reflux groups being most common. Twelve microRNAs displayed an effect of GI disturbance and showed association with GI medication uses and measures of behavior. These 12 microRNAs displayed enrichment for 13 physiologic pathways, including metabolism/digestion long-term depression, and neurobiology of addiction. This study identifies salivary micro-transcriptome features with differential expression among children with ASD-related GI disturbance. A subset of the RNAs displays relationships with treatment modality and are associated with autistic behaviors. The pathobiologic targets of the micro-transcriptome markers may serve as targets for individualized therapeutic interventions aimed at easing pain and behavioral difficulties seen in ASD-related GI disturbance.

14.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092191

RESUMO

Recurrent concussions increase risk for persistent post-concussion symptoms, and may lead to chronic neurocognitive deficits. Little is known about the molecular pathways that contribute to persistent concussion symptoms. We hypothesized that salivary measurement of microribonucleic acids (miRNAs), a class of epitranscriptional molecules implicated in concussion pathophysiology, would provide insights about the molecular cascade resulting from recurrent concussions. This hypothesis was tested in a case-control study involving 13 former professional football athletes with a history of recurrent concussion, and 18 age/sex-matched peers. Molecules of interest were further validated in a cross-sectional study of 310 younger individuals with a history of no concussion (n = 230), a single concussion (n = 56), or recurrent concussions (n = 24). There was no difference in neurocognitive performance between the former professional athletes and their peers, or among younger individuals with varying concussion exposures. However, younger individuals without prior concussion outperformed peers with prior concussion on three balance assessments. Twenty salivary miRNAs differed (adj. p < 0.05) between former professional athletes and their peers. Two of these (miR-28-3p and miR-339-3p) demonstrated relationships (p < 0.05) with the number of prior concussions reported by younger individuals. miR-28-3p and miR-339-5p may play a role in the pathophysiologic mechanism involved in cumulative concussion effects.


Assuntos
Biomarcadores/metabolismo , Concussão Encefálica/genética , MicroRNAs/genética , Saliva/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Atletas/estatística & dados numéricos , Estudos de Casos e Controles , Criança , Estudos Transversais , Futebol Americano , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Cytokine ; 133: 155126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505093

RESUMO

Prenatal Alcohol Exposure (PAE) exerts devastating effects on the Central Nervous System (CNS), which vary as a function of both ethanol load and gestational age of exposure. A growing body of evidence suggests that alcohol exposure profoundly impacts a wide range of cytokines and other inflammation-related genes in the CNS. The olfactory system serves as a critical interface between infectious/inflammatory signals and other aspects of CNS function, and demonstrates long-lasting plasticity in response to alcohol exposure. We therefore utilized transcriptome profiling to identify gene expression patterns for immune-related gene families in the olfactory bulb of Long Evans rats. Pregnant dams received either an ad libitum liquid diet containing 35% daily calories from ethanol (ET), a pair-fed diet (PF) matched for caloric content, or free choice (FCL) access to the liquid diet and water from Gestational Day (GD) 11-20. Offspring were fostered to dams fed the FCL diet, weaned on P21, and then housed with same-sex littermates until mid-adolescence (P40) or young adulthood (P90). At the target ages of P40 or P90, offspring were euthanized via brief CO2 exposure and brains/blood were collected. Gene expression analysis was performed using a Rat Gene 1.0 ST Array (Affymetrix), and preliminary analyses focused on two moderately overlapping gene clusters, including all immune-related genes and those related to neuroinflammation. A total of 146 genes were significantly affected by prenatal Diet condition, whereas the factor of Age (P40 vs P90) revealed 998 genes significantly changed, and the interaction between Diet and Age yielded 162 significant genes. From this dataset, we applied a threshold of 1.3-fold change (30% increase or decrease in expression) for inclusion in later analyses. Findings indicated that in adolescents, few genes were altered by PAE, whereas adults displayed an increase of a wide range of gene upregulation as a result of PAE. Pathway analysis predicted an increase in Nf-κB activation in adolescence and a decrease in adulthood due to prenatal ethanol exposure, indicating age-specific and long-lasting alterations to immune signaling. These data may provide important insight into the relationship between immune-related signaling cascades and long-term changes in olfactory bulb function after PAE.


Assuntos
Etanol/efeitos adversos , Expressão Gênica/genética , Inflamação/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Citocinas/genética , Feminino , Perfilação da Expressão Gênica/métodos , Hipocampo/patologia , Masculino , Bulbo Olfatório/patologia , Gravidez , Ratos , Ratos Long-Evans
16.
J Am Acad Child Adolesc Psychiatry ; 59(2): 296-308, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926572

RESUMO

OBJECTIVE: Clinical diagnosis of autism spectrum disorder (ASD) relies on time-consuming subjective assessments. The primary purpose of this study was to investigate the utility of salivary microRNAs for differentiating children with ASD from peers with typical development (TD) and non-autism developmental delay (DD). The secondary purpose was to explore microRNA patterns among ASD phenotypes. METHOD: This multicenter, prospective, case-control study enrolled 443 children (2-6 years old). ASD diagnoses were based on DSM-5 criteria. Children with ASD or DD were assessed with the Autism Diagnostic Observation Schedule II and Vineland Adaptive Behavior Scales II. MicroRNAs were measured with high-throughput sequencing. Differential expression of microRNAs was compared among the ASD (n = 187), TD (n = 125), and DD (n = 69) groups in the training set (n = 381). Multivariate logistic regression defined a panel of microRNAs that differentiated children with ASD and those without ASD. The algorithm was tested in a prospectively collected naïve set of 62 samples (ASD, n = 37; TD, n = 8; DD, n = 17). Relations between microRNA levels and ASD phenotypes were explored. RESULT: Fourteen microRNAs displayed differential expression (false discovery rate < 0.05) among ASD, TD, and DD groups. A panel of 4 microRNAs (controlling for medical/demographic covariates) best differentiated children with ASD from children without ASD in training (area under the curve = 0.725) and validation (area under the curve = 0.694) sets. Eight microRNAs were associated (R > 0.25, false discovery rate < 0.05) with social affect, and 10 microRNAs were associated with restricted/repetitive behavior. CONCLUSION: Salivary microRNAs are "altered" in children with ASD and associated with levels of ASD behaviors. Salivary microRNA collection is noninvasive, identifying ASD-status with moderate accuracy. A multi-"omic" approach using additional RNA families could improve accuracy, leading to clinical application. CLINICAL TRIAL REGISTRATION INFORMATION: A Salivary miRNA Diagnostic Test for Autism; https://clinicaltrials.gov/; NCT02832557.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , MicroRNAs , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Humanos , Estudos Prospectivos , Saliva
17.
J Autism Dev Disord ; 50(9): 3114-3125, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30903561

RESUMO

Examining community views on genetic/epigenetic research allows collaborative technology development. Parent perspectives toward genetic/epigenetic testing for autism spectrum disorder (ASD) are not well-studied. Parents of children with ASD (n = 131), non-ASD developmental delay (n = 39), and typical development (n = 74) completed surveys assessing genetic/epigenetic knowledge, genetic/epigenetic concerns, motives for research participation, and attitudes/preferences toward ASD testing. Most parents (96%) were interested in saliva-based molecular testing for ASD. Some had concerns about privacy (14%) and insurance-status (10%). None (0%) doubted scientific evidence behind genetic/epigenetic testing. Most reported familiarity with genetics (88%), but few understood differences from epigenetics (19%). Child developmental status impacted insurance concerns (p = 0.01). There is broad parent interest in a genetic/epigenetic test for ASD. It will be crucial to carefully consider and address bioethical issues surrounding this sensitive topic while developing such technology.


Assuntos
Transtorno do Espectro Autista/genética , Testes Genéticos , Pais/psicologia , Atitude , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Epigênese Genética , Feminino , Humanos , Masculino , Motivação , Inquéritos e Questionários
18.
PLoS One ; 14(6): e0218252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31247001

RESUMO

Changes in the function and microbiome of the upper and lower gastrointestinal tract have been documented in Parkinson's disease (PD), although most studies have examined merely fecal microbiome profiles and patients with advanced disease states. In the present study we sought to identify sensitive and specific biomarkers of changes in the oral microbiome of early stage PD through shotgun metatranscriptomic profiling. We recruited 48 PD subjects and 36 age- and gender-matched healthy controls. Subjects completed detailed assessments of motor, cognitive, balance, autonomic and chemosensory (smell and taste) functions to determine their disease stage. We also obtained a saliva sample for profiling of microbial RNA and host mRNA using next generation sequencing. We found no differences in overall alpha and beta diversity between subject groups. However, changes in specific microbial taxa were observed, including primarily bacteria, but also yeast and phage. Nearly half of our findings were consistent with prior studies in the field obtained through profiling of fecal samples, with others representing highly novel candidates for detection of early stage PD. Testing of the diagnostic utility of the microbiome data revealed potentially robust performance with as few as 11 taxonomic features achieving a cross-validated area under the ROC curve of 0.90 and overall accuracy of 84.5%. Bioinformatic analysis of 167 different metabolic pathways supported shifts in a small set of distinct pathways involved in amino acid and energy metabolism among the organisms comprising the oral microbiome. In parallel with the microbial analysis, we also examined the evidence for changes in human salivary mRNAs in the same subjects. This revealed significant changes in a set of 9 host mRNAs, several of which mapped to various brain functions and showed correlations with some of the significantly changed microbial taxa. Unexpectedly, we also observed robust correlations between many of the microbiota and functional measures, including those reflecting cognition, balance, and disease duration. These results suggest that the oral microbiome may represent a highly-accessible and informative microenvironment that offers new insights in the pathophysiology of early stage PD.


Assuntos
Microbiota , Atividade Motora , Boca/microbiologia , Doença de Parkinson/microbiologia , Doença de Parkinson/fisiopatologia , Idoso , Bactérias/genética , Biodiversidade , Cognição , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Redes e Vias Metabólicas , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Curva ROC , Tempo de Reação , Saliva/microbiologia
19.
Front Genet ; 10: 350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068967

RESUMO

Differential abundance analysis is a crucial task in many microbiome studies, where the central goal is to identify microbiome taxa associated with certain biological or clinical conditions. There are two different modes of microbiome differential abundance analysis: the individual-based univariate differential abundance analysis and the group-based multivariate differential abundance analysis. The univariate analysis identifies differentially abundant microbiome taxa subject to multiple correction under certain statistical error measurements such as false discovery rate, which is typically complicated by the high-dimensionality of taxa and complex correlation structure among taxa. The multivariate analysis evaluates the overall shift in the abundance of microbiome composition between two conditions, which provides useful preliminary differential information for the necessity of follow-up validation studies. In this paper, we present a novel Adaptive multivariate two-sample test for Microbiome Differential Analysis (AMDA) to examine whether the composition of a taxa-set are different between two conditions. Our simulation studies and real data applications demonstrated that the AMDA test was often more powerful than several competing methods while preserving the correct type I error rate. A free implementation of our AMDA method in R software is available at https://github.com/xyz5074/AMDA.

20.
Mol Biol Cell ; 30(11): 1272-1284, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30893019

RESUMO

Previous studies in yeast showed that mitochondrial stressors not directly targeting the protein import machinery can cause mitochondrial precursor overaccumulation stress (mPOS) in the cytosol independent of bioenergetics. Here, we demonstrate mPOS and stress responses in human cells. We show that overloading of mitochondrial membrane carrier, but not matrix proteins, is sufficient to induce cytosolic aggresomes and apoptosis. The aggresomes appear to triage unimported mitochondrial proteins. Interestingly, expression of highly unstable mutant variants of the mitochondrial carrier protein, Ant1, also induces aggresomes despite a greater than 20-fold reduction in protein level compared to wild type. Thus, overloading of the protein import machinery, rather than protein accumulation, is critical for aggresome induction. The data suggest that the import of mitochondrial proteins is saturable and that the cytosol is limited in degrading unimported mitochondrial proteins. In addition, we found that EGR1, eEF1a, and ubiquitin C are up-regulated by Ant1 overloading. These proteins are known to promote autophagy, protein targeting to aggresomes, and the processing of protein aggregates, respectively. Finally, we found that overexpression of the misfolded variants of Ant1 induces additional cytosolic responses including proteasomal activation. In summary, our work captured a profound effect of unimported mitochondrial proteins on cytosolic proteostasis and revealed multiple anti-mPOS mechanisms in human cells.


Assuntos
Proteínas de Transporte , Citosol/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Agregados Proteicos , Estresse Fisiológico , Translocador 1 do Nucleotídeo Adenina/metabolismo , Células HEK293 , Humanos , Proteínas Mitocondriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...