Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38204093

RESUMO

This paper aims to compare two ceramic materials available for additive manufacturing (AM) processes-vat photopolymerization (VPP) and material extrusion (MEX)-that result in fully ceramic parts after proper heat treatment. The analysis points out the most significant differences between the structural and mechanical properties and the potential application of each AM technology. The research revealed different behaviors for the specimens obtained via the two mentioned technologies. In the case of MEX, the specimens exhibited similar microstructures before and after heat treatment. The sintering process did not affect the shape of the grains, only their size. For the VPP specimens, directly after the manufacturing process, irregular grain shapes were registered, but after the sintering process, the grains fused, forming a solid structure that made it impossible to outline individual grains and measure their size. The highest compression strength was 168 MPa for the MEX specimens and 81 MPa for the VPP specimens. While the VPP specimens had half the compression strength, the results for the VPP specimens were significantly more repeatable.

2.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984093

RESUMO

Aluminum honeycomb structures are used in the construction of protective materials due to the positive relationship between their mass and their energy-absorbing properties. Applying such materials in the construction of large machinery, such as military vehicles, requires the development of a new method of finite element modeling, one that considers conditions with high strain rates, because a material model is currently lacking in the available simulation software, including LS-DYNA. In the present study, we proposed and verified a method of numerically modeling honeycomb materials using a simplified Y element. Results with a good level of agreement between the full core model and the Y element were achieved. The obtained description of the material properties was used in the subsequent creation of a homogeneous model. In addition, we considered the influence of increases in pressure and the leakage of the air entrapped in the honeycomb cells. As a result, we were able to attain a high level of accuracy regarding the stress values across the entire range of progressive failure, from the loss of stability to full core densification, and across a wide range of strain rates.

3.
Materials (Basel) ; 15(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744222

RESUMO

Aramid and polyamide cords are used in a wide range of applications, particularly in the automotive industry (tire reinforcement) and textile industry for military and fireguard purposes. The problem of the reliable experimental study of tensile behavior of synthetic cords is considered in this paper. In the available standards for synthetic cord testing, particularly ASTM D 885-03, the tensile test must result with the cord damage in the middle of gauge length, and the cords should be fixed in the machine clamps. The trial test gave damage near the clamps. We propose a novel testing stage mounted in the testing machine clamps to achieve the uniform tensile stress distribution in the gauge length of the measured cords. The results of the deformations were measured in two ways: using testing machine head displacement and a videoextensometer. Stress curves of four distinguished cords were evaluated and compared. The second method allowed to acquire results differing from the manufacturers' data from 0.7% to 21.5%, which allowed for the conclusion that the designed test stand allows for obtaining reliable results for stretched cords.

4.
Materials (Basel) ; 15(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269025

RESUMO

Honeycomb aluminum structures are used in energy-absorbing constructions in military, automotive, aerospace and space industries. Especially, the protection against explosives in military vehicles is very important. The paper deals with the study of selected aluminum honeycomb sandwich materials subjected to static and dynamic compressive loading. The used equipment includes: static strength machine, drop hammer and Split Hopkinson Pressure Bar (SHPB). The results show the influence of applied strain rate on the strength properties, especially Plateau stress, of the tested material. In each of the discussed cases, an increase in the value of plateau stresses in the entire strain range was noted with an increase in the strain rate, with an average of 10 to 19%. This increase is mostly visible in the final phase of structure destruction, and considering the geometrical parameters of the samples, the plateau stress increase was about 0.3 MPa between samples with the smallest and largest cell size for the SHPB test and about 0.15 MPa for the drop hammer test.

5.
Materials (Basel) ; 14(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201605

RESUMO

Fireproof fabrics are commonly used for protection of fireguards. Such materials must be characterized by improved heat resistance, especially to radiation and flame. In this paper, fireproof fabric (NATAN and PROTON-trademark names) was covered with Ti-Si-N nanocomposite reflective coating using magnetron sputtering. The fabrics were subjected to heat radiation of heat flux density from 0.615 to 2.525 kW/m2. A testing stage equipped with a heat source, thermal imaging camera and thermocouples was used. Two variants of the coatings were studied: Ti-Si and (Ti,Si)N considering different thicknesses of layers. The temperature increment and time to reach the pain threshold (60 °C) which corresponds approximately to a 2nd-degree burn according to Henriques criterion were analyzed. In addition, the microstructural analysis of the samples using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) system was performed. The improvement of heat resistance showed for Ti-Si-coated PROTON and NATAN for all tested heat flux densities. Time to reach 60 °C for PROTON fabric increased maximally from 11.23 s (without coating) to 13.13 s (Ti-Si coating) for heat flux density of 0.615 kW/m2 and for NATAN-maximally from 7.76 s (without coating) to 11.30 s (Ti-Si coating) for the same heat flux density.

6.
Materials (Basel) ; 13(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371299

RESUMO

Stereolithography (SLA) is an additive manufacturing process based on the photocuring of resins with the use of UV light. The printed samples can be used not only for the visualization of structures, but also to develop elements of real constructions. In the study, SLA-printed samples made of Formlabs' Durable Resin were tested in static, dynamic, and Hopkinson's bar tests. The recommended UV and heat curing time for this resin is 60 min for each process. For the tests, 5-minute and 30-min curing times were also considered. The obtained stress-strain curves were compared. The resin showed a difference in response to the strain rate effect and a curing time influence was noticed. For the static tests, the post-curing time had the greatest effect with a very small standard deviation. For the dynamic tests, similar dependencies were observed but with a greater standard deviation. The tests at very high strain rates were associated with a much greater level of difficulty in execution, recording, and signal analyzing, and the influence of the exposure time on the mechanical properties was not straightforward. The tested resin showed strengthening with increases in the strain rate as well as in the curing time.

7.
Materials (Basel) ; 13(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326148

RESUMO

The presented study deals with the analysis of the stochastic geometry of grains on ceramic foam strength behavior. A microstructural finite element (FE) model of a grainy structure of such a material was developed and stochastic changes to the grain geometry (initially of a regular cubic shape) were introduced. The numerical compression test of a series of finite element models was carried out with the use of LS Dyna computer code. To consider the ceramic specific behavior, the Johnson Holmquist constitutive model was implemented with parameters for alumina. The influence of the stochastic irregularities on the ceramic foam strength was observed-the geometry changes caused an increase in the maximum stress, which could be the basis for the indication that the production of the energy absorbing material should be based on mostly irregular grains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA